# **GSK980TD Turning CNC**

# PLC User Manual



# **Book 1 PROGRAMMING**

PLC specification, PLC address, ladder

## **Book 2 FUNCTION**

PLC function control logic and relative signals

## **Book 3 CNC CONFIGRUTION SOFTWARE**

**GSKCC** software and usage

## APPENDIX

| Appendix 1: | input signal (X)                         | .appendix-1 |
|-------------|------------------------------------------|-------------|
| Appendix 2: | output signal (Y)                        | appendix-2  |
| Appendix 3: | G, F signal                              | appendix-3  |
| Appendix 4: | GSK980TD standard function configuration | appendix-8  |

ppendix

# BOOK 1

# PROGRAMMING

| Chapter 1 SEQUENTIAL PROGRAM I - I                   | 1 |
|------------------------------------------------------|---|
| 1.1 PLC SPECIFICATION I - I                          | 1 |
| 1.2 STRUCTURE of SEQUENTIAL PROGRAM I - I            | 1 |
| 1.2.1 Subprogram I - I                               | 1 |
| 1.2.2 Subprogram Embedding I -2                      | 2 |
| 1.2.3 Conditional Branch I -3                        | 3 |
| 1.3 EXECUTING SEQUENTIAL PROGRAM I -3                | 3 |
| 1.3.1 Execution Process of Sequential Program        | 3 |
| 1.3.2 Cycle Execution of Sequential Program I        | 4 |
| 1.3.3 Priority Order of Executing Sequential Program | 4 |
| 1.4 PROCESSING INPUT/OUTPUT SIGNAL I -:              | 5 |
| 1.4.1 Processing Input Signal I -:                   | 5 |
| 1.4.2 Processing Input Signal I -e                   | 5 |
| 1.4.3 Synchronous Procession of Short Pulse Signal   | 7 |
| 1.4.4 Interlock Signal I -7                          | 7 |
| 1.5 EDITING SEQUENTIAL PROGRAM I -7                  | 7 |
| 1.5.1 Distributing Interface (Step 1) I -8           | 8 |
| 1.5.2 Editing Ladder (Step 2) I -8                   | 8 |
| 1.5.3 Debugging Ladder (Step 3) I -8                 | 8 |
| 1.5.4 Program Editing Limit I -8                     | 8 |
| Chapter 2 ADDRESS II - I                             | 1 |
| 2.1 MACHINE $\rightarrow$ PLC ADDRESS (X) II -:      | 1 |
| 2.1.1 X Address in I/O Interface II -2               | 2 |
| 2.1.2 X Address on Operator Panel II -2              | 2 |
| 2.2 PLC→MACHINE ADDRESS (Y) II -:                    | 3 |
| 2.2.1 Y Address in I/O Interface II -3               | 3 |
| 2.2.2 Y Addresses on Operator Panel II               | 4 |
| 2.3 PLC→NC ADDRESS (G) II                            | 4 |
| 2.4 NC→PLC ADDRESS (F) II                            | 4 |
| 2.5 INTERNAL RELAY ADDRESS II                        | 4 |
| 2.6 INFORMATION DISPLAYING REQUEST ADDRESS (A) II -  | 5 |
| 2.7 HOLD RELAY ADDRESS (K) II -                      | 5 |
| 2.8 COUNTER ADDRESS (C) II -                         | 5 |
| 2.9 COUNTER PRESET VALUE ADDRESS (DC) II -           | 5 |
| 2.10 TIMER ADDRESS (T) II-0                          | 5 |
| 2.11 TIMER PRESET VALUE ADDRESS (DT) II - 7          | 7 |
| 2.12 DATA LIST ADDRESS (D) II - 7                    | 7 |
| 2.13 LABEL ADDRESS (L) II -8                         | 8 |
| 2.14 SUBPROGRAM NUMBER (P) II -8                     | 8 |
| Chapter 3 PLC BASIC INSTRUCTIONS                     | 1 |
| 3.1 LD, LDI, OUT INSTRUCTION                         | 1 |
| 3.2 AND, ANI INSTRUCTION III-2                       | 2 |
| 3.3 OR, ORI INSTRUCTION                              | 2 |
| 3.4 ORB INSTRUCTION                                  | 3 |
| 3.5 ANB INSTRUCTION                                  | 3 |
| Chapter 4 PLC FUNCTION INSTRUCTIONS                  | 1 |

| 4.1 END1 (END of GRADE ONE PROGRAM)                    | IV-1  |
|--------------------------------------------------------|-------|
| 4.2 END2 (END of GRADE TWO PROGRAM)                    | IV-1  |
| 4.3 SET                                                | IV-2  |
| 4.4 RST(RESET)                                         | IV-2  |
| 4.5 CMP (BINARY COMPARATIVE SET)                       | IV-3  |
| 4.6 TMRB (TIMER)                                       | IV-4  |
| 4.7 CTRC (BINARY COUNTER)                              | IV-5  |
| 4.8 MOVN (BINARY DATA COPY)                            | IV-6  |
| 4.9 DECB (BINARY ENCODING)                             | IV-7  |
| 4.10 CODB (BINARY CODE CONVERSION)                     | IV-7  |
| 4.11 JMPB (PROGRAM JUMPING)                            | IV-9  |
| 4.12 LBL (PROGRAM JUMPING LABEL)                       | IV-9  |
| 4.13 CALL (SUBPROGRAM CALLING)                         | IV-10 |
| 4.14 SP (START of SUBPROGRAM), SPE (END of SUBPROGRAM) | IV-10 |
| 4.15 ROTB (BINARY ROTATION CONTROL)                    | IV-11 |
| 4.16 PARI (PARITY CHECK)                               | IV-13 |
| 4.17 ADDB (BINARY DATA ADDING)                         | IV-14 |
| 4.18 SUBB (BINARY DATA SUBTRACTING)                    | IV-15 |
| 4.19 DIFU (DRIFT UP SET)                               | IV-16 |
| 4.20 DIFD (DRIFT DOWN SET)                             | IV-16 |
| 4.21 MOVE (AND)                                        | IV-17 |
| 4.22 ALT (ALTERNATIVE OUTPUT)                          | IV-18 |

## Chapter 1 SEQUENTIAL PROGRAM

## **1.1 PLC SPECIFICATION**

For different CNC PLC, there are different program capacity, processing speed, function instructions and nonvolatile memory addresses. Specifications of GSK980TD PLC are as follows:

| Speci                                | fication                                   | 980TD-PLC                               |  |
|--------------------------------------|--------------------------------------------|-----------------------------------------|--|
| Progr                                | amming language                            | Chinese ladder                          |  |
| Progr                                | ramming software                           | GSKCC.exe                               |  |
| Progr                                | amming grades                              | 2                                       |  |
| Executive cycle of grade one program |                                            | 8ms                                     |  |
| Avera                                | ge processing time of basic instruction    | <2 µ s                                  |  |
| Max.                                 | step of program                            | 5000 steps                              |  |
| Programming instruction              |                                            | Basic instruction +function instruction |  |
|                                      | Internal relay address (R)                 | R0000~R0999                             |  |
|                                      | Information displaying request address (A) | A0000~A0024                             |  |
|                                      | Timer address (T)                          | T0000~T0099                             |  |
|                                      | Counter address (C)                        | C0000~C0099                             |  |
| Data tablet address (D)              |                                            | D0000~D0999                             |  |
| Hold relay address (K)               |                                            | K0000~K0039                             |  |
| Counter preset value address (DC)    |                                            | DC0000~DC0099                           |  |
| ing                                  | Timer preset value address (DT)            | DT0000~DT0099                           |  |
| add                                  | Subprogram address (P)                     | P0000~P9999                             |  |
| <b>Example 2 Label address</b> (L)   |                                            | L0000~L9999                             |  |
| •                                    | Machine→PLC address (X)                    | X0000~X0029                             |  |
| PLC→machine address (Y)              |                                            | Y0000~Y0019                             |  |
|                                      | CNC→PLC address (F)                        | F0000~F0255                             |  |
| PLC→CNC address (G)                  |                                            | G0000~G0255                             |  |

## **1.2 STRUCTURE of SEQUENTIAL PROGRAM**

Sequential program is defined to logically control the machine and relative devices according to sequence of ladder. The sequence of ladder is compiled in a traditional PLC but GSK980TD CNC PLC is integrated by traditional one and advanced structured programming, employed with subprogram, embedded subprogram and conditional branch, and with apparent advantages compared to the traditional.

#### 1.2.1 Subprogram

In GSK980TD CNC PLC program, a special subprogram can be called according to requirements of programming. For example, subprogram P0001 can be called when contactor X0000.0 is closed as follows:



## 1.2.2 Subprogram Embedding

GSK980TD CNC PLC can realize 20 grades subprogram embedding as the following figure. Subprogram P0001 can be called when contractor X0000.0 is closed in main program; subprogram P0002 can be called when contractor X0002.0 is closed in the subprogram P0001.





### **1.2.3 Conditional Branch**

The system can judge whether the setting conditions to execute a corresponding subprogram are satisfactory when a main program is executed circularly, otherwise the system executes subprograms in order as the above-mentioned figure.

## **1.3 EXECUTING SEQUENTIAL PROGRAM**

The edited sequential programs(ladder program) are downloaded to 980TD by serial, CNC reads the ladder and converts into some format identified by it after it is switched on again, and then CPU decodes and operation processes them to store into RAM, and last reads every instruction in memory to execute it by arithmetical operation.

#### **1.3.1 Execution Process of Sequential Program**

PLC sequence control is executed by software and there is different from general relay circuit, and so its method is understandingly considered in editing PLC sequential programs.

Every relay can output simultaneously for general relay control circuit as the following figure. Y0002.3 and Y0002.5 output simultaneously when contactor X0000.0, X0002.0 and X0002.2 are closed; in PLC sequence control, every relay outputs in order. For example, Y0002.3 outputs and then Y0002.5 does when X0000.0, X0002.0 and X0002.2 are closed, namely, outputs are executed in order as ladder.



### 1.3.2 Cycle Execution of Sequential Program

Cycle execution of sequential program is defined that PLC executes ladder from its home to end, and again from its home to end after the run is completed.

Processing cycle is defined to runtime of ladder from home to end. The shorter the processing cycle is, the stronger the response of signal is.

## 1.3.3 Priority Order of Executing Sequential Program

GSK980TD PLC programs are divided into grade one and grade two programs which processing cycles are different. The first one is executed per 8ms to do with short pulse signal with quick reaction, and the second one is executed per 8n(ms), in which n is fraction times. PLC divides the grade two program into n blocks according to runtime, and executes one block per each 8(ms).



Fraction of the grade two program is to execute the first and execution process is as the following figure when the fraction number is n; T11, T12, T1n are runtime to execute the first. T21, T22, T2n separately corresponds to runtime of No. n block in executing the second when No. n cycle is execute. Tc1, Tc2, Tcn separately corresponds to hold time by CNC when No. n cycle is executed.

The program returns to its beginning to continue execution when the last fraction block of the second is executed completely. The first is executed every 8ms, No. n block of the second is done every 8n, and runtime

of one cycle is 8n(ms). The more the fraction number of the second is, the longer the runtime of one cycle is.



## **1.4 PROCESSING INPUT/OUTPUT SIGNAL**

Processing of input/output signal is as the following figure. X signal of machine I/O interface and F signal of NC are separately input to input memories at machine side and NC side, and directly used by the first grade program; they separately input to synchronous input memories are used by the second. Output signals of the first and the second are separately output to output memories at NC side and machine side, and then separately output to NC and I/O interface of machine

Signal states of the above-mentioned memories are displayed by diagnostic interface, and the diagnostic number corresponds to address number of program.



## **1.4.1 Processing Input Signal**

A: Input signal of grade one program:

Input memory at NC side is scanned every 8ms and stores F signal from NC, and the system directly use its state when the first is executed.

B: Input signal of grade two program:Input signal of the second is the one stored by the first. The first directly use F and X signal and so the input

signal of the second lags the first one and its max. lag time is runtime of one grade two program.

C: Difference of input signal states of the first and the second:

For the same input signal, its states are different in the first and the second when PLC reads input signals, because the first reads input memories at NC side and machine side but the second reads the synchronous input memory at NC side and ones at machine side. The input signal of the second lags behind that of the first and its lag time is 8nms which should be noted.



When the lag time is the first 8ms, X0001.0=1 and the system executes the first Y0001.0=1. When the system starts to execute the second, X0001.0=1 inputs to the synchronous input memory and starts to execute the first block of the fractional second.

When the lag time is the second 8ms, X0001.0=0 and the system executes the first one Y0001.0=1. And then the system executes the second block of the fractional second but X0001.0=1 which state is still the previous synchronous input memory and Y0002.3=1 after execution.

## 1.4.2 Processing Input Signal

A: Signal to NC

PLC transmits output signal to the output memory at NC side every 8ms, and then directly outputs to NC.

B: Signal to machine

PLC transmits output signal to the output memory at machine side, and then directly outputs to memory every 2ms.

### 1.4.3 Synchronous Procession of Short Pulse Signal

The first is used for processing the short pulse signal. When it is less than 8ms, namely when the system executes the first, the input signal state may be changed, which may execute programs by mistake.



As above, X0001.3=0 is changed to X0001.3=1 after Y0002.3=1 is executed, and if the system executes the next line of ladder and Y0003.3=1, at the moment Y0002.3=1 and Y0003.3=1. To avoid the above, process synchronously the short pulse signal as follows:



After the program is executed synchronously and when X0001.3=1, Y0003.3=1, Y0002.3=0, X0001.3=0, Y0002.3=1, and Y0003.3=0, but Y0003.3=1 or Y0002.3=1.

#### 1.4.4 Interlock Signal

For safety, the signals must be employed with soft interlock in sequence control, and with hard interlock to relay control circuit of power electric box at machine side at the same time. Because the hardware is failure, the interlock is invalid in executing sequential program even if it is employed logically with soft interlock, which can ensure the operator is not injured and the machine is prevented from damage.

## **1.5 EDITING SEQUENTIAL PROGRAM**

Edit the sequential program from ladder which is composed of relay contacts, symbols and function instructions. Logic relationship in ladder consists of sequential program which is edited by two methods: one is employed with input to use program instructions and the other is with relay symbols by their corresponding contactor, symbol and function instruction. Edit the sequential program employed with the ladder format instead of mnemonic code language when the system is employed with the relay symbol.

In actual editing sequential program, use programming instruction or ladder to edit it according to PLC. In the User Manual, the system is employed with ladder as follows:

### 1.5.1 Distributing Interface (Step 1)

The interfaces can be distributed after control target is defined and the corresponding input/output signal points are counted. Refer to input/output interface signal list

## 1.5.2 Editing Ladder (Step 2)

Edit the software GSKCC.EXE by 980TD ladder to represent the required control operations of machine. Counter, timer which are not done by relay symbol is represented by the specified function instructions. The edited ladder is downloaded to CNC by serial.

## 1.5.3 Debugging Ladder (Step 3)

After the ladder is downloaded to 980TD, the ladder is debugged as follows:

A: emulator

Use one emulator instead of machine to debug it. Machine signal state is represented with switch ON/OFF, and output signal state is done with indicator ON/OFF. Observe if every indicator on the emulator is correct when executing CNC.

B: CNC diagnosis

Observe if the diagnostic state of every signal is consistent with the function requirement when executing CNC. Check the ladder by checking each function in order.

C: actual run

There may be an unexpected result in the actual debugging machine and so do preventive measures before debugging.

#### **1.5.4 Program Editing Limit**

In program, END1 and END2 are needed, which are taken separately as ending character of the first and the second, and END1 must be before END2. The system only supports parallel output instead of multi grades output and there are syntactic errors as follows:



## Chapter 2 ADDRESS

Addresses are used for distinguishing signals. Different addresses separately correspond to input/output signal at machine side and CNC side, internal relay, counter, timer, holding relay and data list. An address number is consisted of address type, address number and bit number as follows:



Address type: X, Y, R, F, G, K, A, T, DT, DC, C, D, L, P Address number: decimal number to express one byte Bit number: octal number, 0~7 separately expressing byte 0~7 bit of front address number

980TD PLC addresses are divided into fixed addresses and definable addresses. Signal definitions of the fixed addresses cannot be changed and are defined by CNC; the definable addresses can be defined again by user according to the actual requirements. Address types are as follows:

| Address | Explanation                           | Range         |
|---------|---------------------------------------|---------------|
| X       | Machine→PLC                           | X0000~X0029   |
| Y       | PLC→machine                           | Y0000~Y0019   |
| F       | NC→PLC                                | F0000~F0255   |
| G       | PLC→NC                                | G0000~G0255   |
| R       | Intermediate relay                    | R0000~R0999   |
| D       | Data register                         | D0000~D0999   |
| С       | Counter                               | C0000~C0099   |
| Т       | Timer                                 | T0000~T0099   |
| DC      | Counter preset value register         | DC0000~DC0099 |
| DT      | Timer preset value register           | DT0000~DT0099 |
| Α       | Information displaying request signal | A0000~A0024   |
| K       | Hold relay                            | K0000~K0039   |
| L       | Jump label                            | L0000~L9999   |
| Р       | Subprogram label                      | P0000~P99999  |

Note: address R900 ~ R999, K30 ~ 39 are used for reserved area of CNC program instead of output relay.

## 2.1 MACHINE $\rightarrow$ PLC ADDRESS (X)

980TD PLC X addresses are divided into two types,the first one is  $X0000.0 \sim X0003.7$ ,which are mainly distributed to CNC XS40 and XS41 I/O interfaces, including fixed addresses and definable addresses, and the second one is  $X0020.0 \sim X0026.7$ , which are fixed addresses and mainly be distributed to input keys on operator panel. Other addresses are reserved ones. The value range is 0 or 1.

## 2.1.1 X Address in I/O Interface

- Address range: X0000.0~X0003.7 are separately distributed to CNC XS40 and XS41 I/O interface.
- Fixed address: X0000.3, X0000.5, X0001.3 separately corresponds to XDEC, ESP, ZDEC signal which can be directly distinguished by CNC in CNC run.

Example: ESP signal is can be connected to X0000.5, CNC directly distinguishes signals on it and judge if there is ESP signal; CNC alarms to emergently stop when G8.4 signal is valid by PLC control.

Namely: CNC alarms to emergently stop when X0000.5 is 0; CNC alarms to emergently stop when G8.4 is 0 by PLC control.

| Input signal of fixed addresses                                      |        |         |  |  |
|----------------------------------------------------------------------|--------|---------|--|--|
| Signal                                                               | Symbol | Address |  |  |
| Emergent stop signal                                                 | ESP    | X0000.5 |  |  |
| Deceleration signal of machine reference point return in X direction | XDEC   | X0000.3 |  |  |
| Deceleration signal of machine reference point return in Z direction | ZDEC   | X0001.3 |  |  |

• Definable address: their functions can be defined by user according to requirement and used for connecting with external electric circuit and ladder. Distribution graph of X address in I/O interface is as follows:



## 2.1.2 X Address on Operator Panel

Address range: X0020.0~X0026.0 are fixed addresses which correspond to press keys on operator panel and which signal definitions cannot be changed by user.

| Relationship between | addresses a | ind press k  | eys is as fo | ollows:    |              |              |               |               |
|----------------------|-------------|--------------|--------------|------------|--------------|--------------|---------------|---------------|
| X0020                | 7           | 6            | 5            | 4          | 3            | 2            | 1             | 0             |
| Кеу                  | SKIP        | SINGLE       |              | MPG        | MACHINE ZERC | MDI          | AUTO          | EDIT          |
| X0021                | 7           | 6            | 5            | 4          | 3            | 2            | 1             | 0             |
| Кеу                  | (X@)        | 0.1          | 0.01         | 0<br>0.001 | PROGRAM ZERO |              | M. S. T. LOCK | M. S. T. LOCK |
| X0022                | 7           | 6            | 5            | 4          | 3            | 2.           | 1             | 0             |
| Key                  |             | <sup>°</sup> |              |            |              | -            | Zø            | 0             |
|                      |             |              |              |            |              |              |               |               |
| X0023                | 7           | 6            | 5            | 4          | 3            | 2            | 1             | 0             |
| Key                  | CCW         |              | STOP         | COOLANT    | CW           |              |               |               |
|                      |             |              | 1            |            |              |              | 1             |               |
| X0024                | 7           | 6            | 5            | 4          | 3            | 2            | 1             | 0             |
| Key                  | PAUSE       |              | ~~%<br>[↓]   |            |              | €<br>₩<br>₩% | (H)<br>(%)    | TOOL          |
|                      |             |              |              |            |              |              |               |               |
| X0025                | 7           | 6            | 5            | 4          | 3            | 2            | 1             | 0             |
| Key                  |             |              |              |            |              |              |               | RUN           |
|                      |             |              | _            |            |              |              |               |               |
| X0026                | 7           | 6            | 5            | 4          | 3            | 2            | 1             | 0             |
| Key                  |             |              |              |            |              |              |               | RESET         |

## 2.2 PLC→MACHINE ADDRESS (Y)

980TD-PLC Y address are divided into two: Y0000.0 $\sim$ Y0003.7 are mainly distributed to CNC XS42 and XS39 I/O interfaces, including fixed address and definable address; Y0004.0 $\sim$ X0009.7 which are mainly distributed to indicators on the operator panel. Other addresses are reserved ones. Their values are 0 or 1.

## 2.2.1 Y Address in I/O Interface

Address range: Y0000.0~Y0003.7 are separately distributed to CNC XS42 and XS39 I/O interfaces and their signal definitions can be defined by user according to requirements to connect to external





Distribution graph of 980TD output interfaces address is as follows:



2.2.2 Y Addresses on Operator Panel

Address range: Y0004.0 $\sim$ Y0009.0 are fixed addresses which correspond to indicators on the operator panel, and which signal definitions cannot be changed by user. Relationship corresponding to each state indicator is referred to Appendix2: Output signal(Y).

## 2.3 PLC→NC ADDRESS (G)

Address range: G0000.0 $\sim$ G0255.7, value range: 0 or 1. Refer to Appendix3: G, F signals about definitions of address signals.

## 2.4 NC→PLC ADDRESS (F)

Address range: F0000.0 $\sim$ F0255.7, value range: 0 or 1. Refer to Appendix3: G, F signal about definitions of address signals.

## 2.5 INTERNAL RELAY ADDRESS

Address range: R0000.0~R0999.7, value range: 0 or 1. They are zero after CNC is switched on.



## 2.6 INFORMATION DISPLAYING REQUEST ADDRESS (A)

Address range: A0000.0 $\sim$ A00024.7 and they are zero after CNC is switched on.



## 2.7 HOLD RELAY ADDRESS (K)

The address area is used for hold relay and setting PLC parameters and data are saved after the system is switched off. Address range:  $K0000.0 \sim K0039.7$ , value range: 0 or 1.



## 2.8 COUNTER ADDRESS (C)

The address area is used for storing current counting value of counter and data are saved after the system is switched off. Address range:  $C0000 \sim C0099$ , value range:  $0 \sim 21,4748,3647$ .



## 2.9 COUNTER PRESET VALUE ADDRESS (DC)

The address area is used for storing preset value of counter and data are saved after the system is switched off. Address range: DC0000 $\sim$ DC0099, value range: 0 $\sim$ 21,4748,3647.



## 2.10 TIMER ADDRESS (T)

The address area is used for storing current value of timer and T0000 $\sim$ T0079 are zero after the system is switched on.T0080 $\sim$ T0099 are saved after it is switched off. Value range: 0 $\sim$ 21,4748,3647.



## 2.11 TIMER PRESET VALUE ADDRESS (DT)



## 2.12 DATA LIST ADDRESS (D)

D0000~D0299 are zero when CNC is switched on. D0300~D0999 are saved after it is switched off. Value range: 0~255.



## 2.13 LABEL ADDRESS (L)

It is used for specifying jump target label in JMPB and LBL label. Range: L0~L9999

## 2.14 SUBPROGRAM NUMBER (P)

It is used for specifying the target subprogram number to call in CALL and subprogram number in SP. Range: P0000~P9999

## Chapter 3 PLC BASIC INSTRUCTIONS

Basic instructions are used for editing sequential programs and executing 1-bit operation. There are basic instructions for GSK980TD PLC as follows:

| Instruction | Function                          | Component           |
|-------------|-----------------------------------|---------------------|
| name        |                                   |                     |
| LD          | Read normally-open contact        | X, Y, F, G, R, K, A |
| LDI         | Read normally-closed contact      | X, Y, F, G, R, K, A |
| OUT         | Output coil                       | Y, G, R, K, A       |
| AND         | Normally-open contact in series   | X, Y, F, G, R, K, A |
| ANI         | Normally-closed contact in series | X, Y, F, G, R, K, A |
| OR          | Parallel normally-open contact    | X, Y, F, G, R, K, A |
| ORI         | Parallel normally-closed contact  | X, Y, F, G, R, K, A |
| ORB         | Parallel series circuit block     |                     |
| ANB         | Parallel circuit block in series  |                     |

## 3.1 LD, LDI, OUT INSTRUCTION

• Mnemonic code and function

| Mnemonic code | Function                     | Ladder symbol     |
|---------------|------------------------------|-------------------|
| LD            | Read normally-open contact   | —                 |
| LDI           | Read normally-closed contact |                   |
| OUT           | Output coil                  | $- \rightarrow -$ |



- A: LD, LDI are used for connecting contact to bus bar. Each one can combine with instruction ANB and can be used at starting point of branch.
- B: OUT is used for driving output relay, internal relay coil instead of input relay.

C: Parallel instruction OUT can be continuously used.

#### • Programming example



Program explanation:

When X0002.1 is 1, the system outputs Y0003.7 When F0100.3 is 0, the system outputs G0120.0

## **3.2 AND, ANI INSTRUCTION**

#### • Mnemonic code and function

| Mnemonic code | Function                          | Ladder symbol |  |  |
|---------------|-----------------------------------|---------------|--|--|
| AND           | Normally-open contact in series   |               |  |  |
| ANI           | Normally-closed contact in series |               |  |  |

#### Instruction explanation

AND, ANI can connect one contact in serial. There can be many contacts in serial and the instructions can be used many times.

#### • Programming example



#### Program explanation:

Use X0002.1,

Use F0100.3 and X0002.1 in series

Use X0008.6, and F0100.3 and X0002.1 in series

If X0002.1=1, X0008.6=1 and F0100.3 is 0, the system outputs Y0003.7.

## 3.3 OR, ORI INSTRUCTION

• Mnemonic code and function

| Mnemonic code | Function                         | Ladder symbol |
|---------------|----------------------------------|---------------|
| OR            | Parallel normally-open contact   |               |
| ORI           | Parallel normally-closed contact |               |

#### • Instruction explanation

A: OR, ORI can be connected to one contact in parallel. When more than two contacts are connected in series and the serial loop is connected with other loop in parallel, the system should use ORB.

B: The system executes OR, ORI from its current step with LD, LDI in parallel.

#### • Programming example



Program explanation:

Use X0002.1 Use F0100.3 and X0002.1 in series If X0002.1=1, and F0100.3 is 0, the system outputs Y0003.7.

## **3.4 ORB INSTRUCTION**

#### •Mnemonic code and function

| Mnemonic code | Function                      | Ladder symbol |
|---------------|-------------------------------|---------------|
| ORB           | Parallel series circuit block |               |

#### • Instruction explanation

A: Serial loop block is defined to its loop combined by more than contacts in series. When the serial loop is connected in parallel, starting point of branch uses LD and its end point uses ORB.

B: ORB is sole instruction without address.

#### • Programming example



Program explanation:

As above figure, there are three branches(0002,0003,0004) from left bus line to node, and 0002 and 0003 are serial circuit blocks. There is parallel serial circuit block between bus line and node or among nodes, the following ending of branch use ORB except for the first one. Use OR instruction if the branch 0004 is not serial circuit block.

ORB and ANB are instructions without operation function, representing or, and relationship among circuit blocks.

## **3.5 ANB INSTRUCTION**

#### • Mnemonic code and function

| Mnemonic code | Function                         | Ladder symbol |  |  |
|---------------|----------------------------------|---------------|--|--|
| ANB           | Parallel circuit block in series |               |  |  |

**Book 1 Programm** 

Instruction explanation

A: Use ANB when the branch loop is serially connected with the previous loop. Use LD, LDI at the starting

point of branch, and use ANB to serially connect with the previous loop.

B: ANB is sole instruction without address.

#### Programming example



#### Program explanation:

As above ladder, ORB represents the parallel serial circuit block in block 2 and ANB represents block 1 and 2 in series.

## Chapter 4 PLC FUNCTION INSTRUCTIONS

Some functions are completed by function instructions instead of basic ones. The function instructions in the system are as follows:

| Instruction | Function                 |  |  |
|-------------|--------------------------|--|--|
| name        |                          |  |  |
| END1        | End of grade one program |  |  |
| END2        | End of grade two program |  |  |
| SET         | Set                      |  |  |
| RST         | Reset                    |  |  |
| СМР         | Comparative set          |  |  |
| CTRC        | Counter                  |  |  |
| TMRB        | Timer                    |  |  |
| MOVN        | Binary Data copy         |  |  |
| PARI        | Parity check             |  |  |
| ADDB        | Binary data adding       |  |  |
| SUBB        | Binary data subtracting  |  |  |
| ALT         | Alternative output       |  |  |

| Instruction | Function                |  |  |
|-------------|-------------------------|--|--|
| name        |                         |  |  |
| ROTB        | Binary rotation control |  |  |
| DECB        | Binary decoding         |  |  |
| CODB        | Binary code conversion  |  |  |
| JMPB        | Program jumping         |  |  |
| LBL         | Program jumping label   |  |  |
| CALL        | Subprogram calling      |  |  |
| SP          | Start of subprogram     |  |  |
| SPE         | End of subprogram       |  |  |
| DIFU        | Ascending edge set      |  |  |
| DIFD        | Descending edge set     |  |  |
| MOVE        | And                     |  |  |
|             |                         |  |  |

## 4.1 END1 (END of GRADE ONE PROGRAM)

#### • Instruction function

There must be END1 in the sequential program one time, located at the end of grade one program. It should be located at the home of the second when there is no grade one program.

• Ladder format



## 4.2 END2 (END of GRADE TWO PROGRAM)

• Instruction function

There must be END2 at the end of grade two program which representing end of grade two program.

Ladder format



## 4.3 SET



Explanation: When X0002.1 is 0, R0002.0 is reserved; when X0002.1 is 1, R0002.0 is set to 0.

## 4.5 CMP (BINARY COMPARATIVE SET)

• Instruction function

Compare two binary data and output its result.

Ladder format



#### • Control condition

ACT =0:add.b is reserved.

=1: compare S1, S2 and output the result as follows:

|                                                    | add.(b+2) | add.(b+1) | add.(b+0) |
|----------------------------------------------------|-----------|-----------|-----------|
| S1>S2                                              | 0         | 0         | 1         |
| S1=S2                                              | 0         | 1         | 0         |
| S1 <s2< td=""><td>1</td><td>0</td><td>0</td></s2<> | 1         | 0         | 0         |

#### • Relative parameter

Length: specify data length, when it is set to 1, 2, 4, the corresponding data length is 1byte, 2bytes, 4 bytes.

S1, S2: compare source data 1 with data 2, and the comparative result can be constant or address number(it is not address bit. For example: add.b is illegal.). Address number is R, X, Y, F, G, K, A, D, T, C, DC and DT.

add.b: it is the comparative result and can be R, Y, G, K and A.

• Relative operation information register:

|             | - |  |          |  |          |      |
|-------------|---|--|----------|--|----------|------|
| <b>R900</b> |   |  | overflow |  | Negative | Zero |
|             |   |  |          |  |          |      |

• Program example:



Explanation: When X0002.1 is 0, the system does not compare the data and R0300.0 is reserved; When X0002.1 is 1, the system compares the data as follows:

|                                                             | R0300.2 | R0300.1 | R0300.0 |
|-------------------------------------------------------------|---------|---------|---------|
| R0100>R0200                                                 | 0       | 0       | 1       |
| R0100=R0200                                                 | 0       | 1       | 0       |
| R0100 <r0200< td=""><td>1</td><td>0</td><td>0</td></r0200<> | 1       | 0       | 0       |

## 4.6 TMRB (TIMER)

#### Instruction function

Delay connecting the timer.

#### Ladder format



#### Control condition

ACT =0: reset TIMER and add.b.

=1: TIMER times from 0, and add.b=1 when TIMER reaches the preset time.

Logic relation is as follows:



#### • Relative parameter

TIMER: timer number, range: T0000~T0099.

TIME: timing constant or data register with DT in front. DT range is from 0 21,4748,3647(ms) . add.b: it is timer output address and can be R, Y, G, K and A.

TIMER is executed every 8ms and timing with 8ms as unit.

#### • Program example:

|      | X0002.1 |      |         |  |
|------|---------|------|---------|--|
| 0002 |         | TMRB | тооо2   |  |
|      |         |      | DT0004  |  |
|      |         |      | R0300.0 |  |
|      |         |      |         |  |

Explanation: When X0002.1 is 0, T0002 and R0300.0 are 0;

When X0002.1 is 1, T0002 starts to count, and R0300.0 is set to 1 after it reaches the time set by DT0004.

## 4.7 CTRC (BINARY COUNTER)

Data in the counter is binary and the functions of CTRC is as follows:

A: reset counter: it resets count value and the system outputs the corresponding signal when the count value reaches the resetting count value.

B: ring counter: input the count value signal when the counter reaches the reset value, and count again the counter reset to initial value.

C: adding/subtracting counter: bit bidirectional counter used for addition and subtraction.

D: initial value selection: it can be 0 or 1.

#### Ladder format



#### • Control condition

ACT is at ascending edge:

- Adding: COUNTER counts from its setting initial value, adds the count one time when it reaches the ascending edge, and O\_add.b =1 when it reaches the reset count value. O\_add.b =0 when COUNTER is less than NCOUNT; COUNTER resumes and starts to count and O\_add.b =0 when it reaches the ascending edge again.
- Subtracting: COUNTER subtracts from its setting initial value, subtracts the count one time when it reaches the ascending edge, and O\_add.b =1 when it reaches the reset count value. O\_add.b =0 when COUNTER is more than NCOUNT; COUNTER resumes and starts to count and O\_add.b =0 when it reaches the ascending edge again.

#### ACT=0:

COUNTER and O\_add.b are reserved.



COUNTER: specify the counter number( Cxxx, xxxx is digit( $0 \sim 99$ ),

NCOUNT: it is counter preset value(constant) and also can be data register beginning with DC. If it is constant, its value is  $0 \sim 21,4748,3647$ .

O\_add.b: when it reaches to the count value, the output is 1 and O\_add can be R, Y, G, K and A.

## Program example:



## Explanation: When R0100.0 is 1, C0001=0 and R0500.0=0;

When R0100.0 is 0, X0002.1 reaches the drift up one time, C0001 adds the count one time, and R0500.0 is 1 if the count reaches 10.

When X0002.1 reaches the drift up again, C0001 is reset to 0 and start to count, and R0500.0 is reset to 0.

## 4.8 MOVN (BINARY DATA COPY)

#### • Instruction function

Transmit data at source address or specified binary data to destination address.

#### • Ladder format



## • Control condition

ACT =0: ADD-D is reserved.

=1: copy the value in ADD-S or constant CON to ADD-D

## • Relative parameter

Length : it is the copy data(1, 2, 4 byte).

ADD-S/CON: it is initial byte of source data address or constant, and its address number is R, X, Y, F, G, K, A,

## D, T, C, DC and DT.

ADD-D: it is initial byte of target address, and its address number is R, Y, G, K, A, D, T, C, DC, DT.

• Program example:



Explanation: R0100 value is transmitted to G0043 when X0003.3 is 1.
# 4.9 DECB (BINARY ENCODING)

#### • Instruction function

Instruction function DECB can decode the binary code data. When there is the same one between one of 8 successive data and the code data, the corresponding output data is 1; when there is no the same one, the output data is 0. DECB is used for encoding data of M or T function. Ladder format

#### Ladder format



#### • Control condition

ACT =0: reset the 8 data bits of ADD2. ADD2.

=1: compare the content value of decoding address(ADD1) with 8 successive data beginning with DATA. When the value of ADD1 is equal to one of 8 data and the output address (ADD2) s corresponding bit which sequence number is that of equal data in these 8 data is set to 1.

#### • Relative parameter

Length: specify the length(1, 2, 4) of ADD1.

ADD1: it is initial address of encoding and the address number is R, X, Y, F, G, K, A, D, T, C, DC and DT.

DATA: reference value of comparative constant.

ADD2: output comparative result. Its address number is R, Y, G, K and A.

• Program example:



When F0010=8, R0010.0=1; When F0010=9, R0010.1=1; When F0010=15, R0010.7=1

# 4.10 CODB (BINARY CODE CONVERSION)

Instruction function

The instruction is used for binary code conversion.

• Ladder format

| ACT |      |         |      |
|-----|------|---------|------|
|     | CODB | Length1 | ADD1 |
|     |      | Length2 | ADD2 |

Control condition

- ACT =0: ADD2 is reserved.
  - =1: value of conversing input data address(ADD1) is taken as list number of conversion list, from which the conversion data corresponding to the list number is transmitted to output address(ADD2) of conversion data.

Conversion data list



#### • Relative parameter

Length1: binary data length and output address length of conversion data in conversion list, 1-1, 2-2, 4-4 byte. Length2: conversion length, 1-2, 2-4, 3-8, 4-16, 5-32, 6-64, 7-128, 8-256.

ADD1: input address of conversion data. Its address has data with only one byte. Its address is R, X, Y, G, F,A, K, and D.

ADD2: output address of conversion data and its address is R, Y, G, K and D.

• Program example:



Example

X0003.3=1:

| X0003.3 = 1, R0100 = 0: | R0200 = 1 |
|-------------------------|-----------|
| X0003.3=1, R0100=1:     | R0200=2   |
| X0003.3=1, R0100=2:     | R0200=3   |
| X0003.3=1, R0100=3:     | R0200=4   |
|                         |           |

| Number | Value |
|--------|-------|
| 000    | 1     |
| 001    | 2     |
| 002    | 3     |
| 003    | 4     |

Conversion data list

# 4.11 JMPB (PROGRAM JUMPING)

• Instruction function

Immediately jump the program to the position set by label with characteristics as follows: jump instructions can use the same label; forbid jumping END1 and END2; forbid jumping subprogram; jump forward or backward.

• Ladder format



#### Control condition

- ACT =0: do not jump and execute the next instruction following JMPB.
  - =1: execute the next instruction following the label after jumping to the specified label.
- Relative parameter
  - Lx : specify the jumping target label, label number must be specified with beginning L address t and it can specify one of L1 to L999.



Explanation: When X0003.3 is 1, the program jumps 0003 and orderly executes from 0004; when X0003.3 is 0, the system orderly executes the program from 0003.

# 4.12 LBL (PROGRAM JUMPING LABEL)

• Instruction function

Specify one label in ladder, namely jumping target position specified by JMPB. One Lx is only specified one time by LBL.

• Ladder format



#### • Relative parameter

Lx : specify jumping target label. The label number is specified with beginning L address t and it can specify one of L1 to L999.

# 4.13 CALL (SUBPROGRAM CALLING)

#### • Instruction function

Call the specified subprogram with characteristics as follows: call instructions can use the same subprogram; call instruction can be embedded; cannot call a subprogram in grade one program; a subprogram is edited following END2.

• Ladder format



Control condition

ACT =0: execute the next instruction following CALL.

- =1: call subprogram which number is specified.
- Relative parameter
  - Px : specify the called subprogram label, its label number is specified with beginning P address and it can specify one of from P1 to P999.

# 4.14 SP (START of SUBPROGRAM), SPE (END of SUBPROGRAM)

• Instruction function

SP is to create a subprogram which number is used for subprogram name ,and SPE is taken as end symbol of program ,when SPE is executed, the main program will be returned to. SP and SPE are together used for specifying the subprogram range ,and the subprogram must be edited following END2.

• Ladder format



- Relative parameter
  - Px : specify the call subprogram label, its label number is specified with beginning P address and it can specify one of P1 to P999.

#### • Program example:



Explanation: When X0003.3 is 1, the program calls P0000 subprogram and jumps to execute 0006, and the system orderly executes the program from 0003 after executing 0009.

When X0003.3 is 0, the system does not call P0000 subprogram and orderly executes subprograms from 0003.

## 4.15 ROTB (BINARY ROTATION CONTROL)

#### Instruction function

The instruction is used for rotation control, such as toolpost, rotary worktable. Its functions are as follows: to select rotation direction of short path ,to count steps from current position to target position ;or to count steps from the previous one of current position to the previous one of target position number of the previous one of target position.





#### Control condition

ACT =0: do not execute instructions, and  $E_add$  and  $O_add.b$  are reserved.

=1: execute instruction and output its result to  $E_add$  and  $O_add.b$ .

#### • Relative parameter

Format:

| RN0 | DIR | POS | INC |                                                                                                                                                                                                                                                                                                                                                                               |
|-----|-----|-----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |     |     |     | <ul> <li>Count position number or steps</li> <li>0: Count position number</li> <li>1: Count steps</li> <li>Count position</li> <li>0: Count target position</li> <li>1: Count the position before target</li> <li>Short circuit selection</li> <li>0: No selection. Positive rotation, i.e. O_add.b=0</li> <li>1: Selection. Its direction is defined by specifics</li> </ul> |
|     |     |     |     | Specify the initial number of swivel table                                                                                                                                                                                                                                                                                                                                    |
|     |     |     |     | 1: Position number of swivel table is from 1                                                                                                                                                                                                                                                                                                                                  |

CNT : centigrade position number of swivel table.

length : specify the length of  $W_{add}$ ,  $D_{add}$  and  $E_{add}(1, 2, 4$  byte).

- W\_add : it is current position address used for storing current position number. Its address number is R, X, Y, F, G , K, A, D, DC and DT.
- D\_add : it is target position address used for storing target position number. Its address number is R, X, Y, F, G, K, A, D, DC and DT.
- E\_add : it is used for counting the result output address. Its address number is R, Y, G, K, A, D, DC and DT.
- O\_add.b : it is used for outputting the rotary direction to ensure adding position number of swivel table is positive(FOR); if it is subtracting, its direction is negative(rev). When O\_add.b=0, the rotary direction is positive; O\_add.b=1, it is negative. Its address number is R, Y, G, K and A.
- Program example:

Example: The current position corresponds to No. 1 tool selection when the toolpost is rotating.



|      | X0003.3 |      |      |         |
|------|---------|------|------|---------|
| 0002 |         | ROTB | 1110 | R0007   |
|      |         |      | 0012 | F0026   |
|      |         |      | 0001 | R0027   |
|      |         |      |      | R0037.0 |

Count the previous position number before target position when the toolpost rotates in short circuit. When the current position number R0007=1 and centigrade position number of swivel table CNT=12, X0003.3=1:

When F0026=10 and the target position is A, R0027=11, R0037.0=1

When F0026=8 and the target position is B, R0027=9, R0037.0=1When F0026=5 and the target position is C, R0027=4, R0037.0=0When F0026=3 and the target position is D, R0027=2, R0037.0=0

# 4.16 PARI (PARITY CHECK)

• Instruction function

Check parity of input data ,which is 1 byte(8 bits)

Ladder format



#### • Control condition

ACT=1: Execute the parity check for input data. If the input data is inconsistent with the one specified by O\_E, Addr\_Err.b is 1; otherwise, Addr\_Err.b is 0

ACT=0: Do not execute instructions and Addr\_Err.b is reserved.

## • Relative parameter

O\_E =0: number of "1" in put data is even

=1: number of "1" in put data is old number

Addr\_Rst.b: when it is 1, Addr\_Err.b is reset to 0 and its address is X, Y, G, R, F, A, K and K. 为1时, Addr\_Err.b.

Addr\_In : it is the input data address and its address is X, Y, G, R, F, A, K and D.

Addr\_Err.b : it is the output address of check result and its address is Y, G, R, A and K.

• Program example:

Programming





Explanation: When X0003.3 is 1, the system executes PARI instruction, O\_E=0000 to execute the even check. When R0010.0 is 1, R0030.0 is reset to 0 and the system does not execute the check. When R0010.0 is 0, it does. When there is an even number for "1"in R0020, R0030.0 is 0. When there is an odd number for "1"in R0020, R0030.0 is 1.

# 4.17 ADDB (BINARY DATA ADDING)

- Instruction function Add binary data
- Ladder format



#### Control condition

ACT=1: the system executes Addr\_Out=AGD1+AGD2. If the operation is mistake, Addr\_Err.b is 1; otherwise, it is 0.

ACT=0: the system does not execute instruction, Addr\_Out and Addr\_Err.b are reserved.

#### • Relative parameter

Length : 1-1, 2-2, 4-4 byte.

- AGD1 : it is a summand and can be constant or address. Its address number is R, X, Y, F, G, A, K, D, T, C, DC and DT.
- AGD2 : it is addend and can be constant or address. Its address number is R, X, Y, F, G, A, K, D, T, C, DC and DT.
- Addr\_Rst.b: when it is 1, Addr\_Err.b is reset to 0 and Addr\_Out is reserved. Its address number is R, X, Y, F, G, A and K.
- Addr\_Out : it is the output data address of run result. Its address is Y, G, R, A, K, DC, DT, D, C, and T. Addr\_Err.b: it is the output address of mistake operation result and its address is Y, G, R, A and K.
- Relative operation information register

| R900 |  | overflow |  | negative | zero |
|------|--|----------|--|----------|------|
|      |  |          |  |          |      |

• Program example:

|      | 0001  | D0000 0 |
|------|-------|---------|
| ADDB |       | R0030.0 |
|      | R0010 | R0040   |
|      | R0020 | R0050.0 |

Explanation: When X0003.3=1, the system executes ADDB instruction. When R0040=R0010+R0020 and if the operation is mistake, R0050.0 is 1, otherwise it is 0. When R0030.0 is 1, R0040 is reserved and R0050.0 is reset to 0.

# 4.18 SUBB (BINARY DATA SUBTRACTING)

Instruction function

Subtract the binary data.

• Ladder format



#### Control condition

ACT=1: the system executes Addr\_Out= MIND-SUBD. If the operation is mistake, Addr\_Err.b is 1; otherwise, it is 0.

ACT=0: the system does not execute instruction, and Addr\_Out and Addr\_Err.b are reserved.

#### • Relative parameter

Length : 1-1, 2-2, 4-4 byte.

- MIND : it is minend and can be constant or address. Its address number is R, X, Y, F, G, A, K, D, T, C, DC and DT.
- SUBD : it is subtrahend and can be constant or address. Its address number is R, X, Y, F, G, A, K, D, T, C, DC and DT.

Addr\_Rst.b: when it is 1, Addr\_Err.b is reset. Its address number is R, X, Y, F, G, A and K.

Addr\_Out: it is the output data address of run result. Its address is Y, G, R, A, K, DC, DT, D, C, and T.

Addr\_Err.b: it is the output address of mistake operation result and its address is Y, G, R, A and K.

• Relative operation information register

| R900 |  | Overflow |  | negative | Zero |
|------|--|----------|--|----------|------|
|      |  |          |  |          |      |

Note: the reset has no related to R900.

• Program example:

|      | X0003.3 |      |       |         |
|------|---------|------|-------|---------|
| 0002 |         | SUBB | 0001  | R0030.0 |
|      |         |      | R0010 | R0040   |
|      |         |      | R0020 | R0050.0 |
|      |         |      |       |         |

Explanation: When X0003.3=1, the system executes SUBB instruction. When R0040=R0010-R0020, and if the operation is mistake, R0050.0 is 0, otherwise it is 1. When R0030.0 is 1, R0040 is reserved and R0050.0 is reset to 0.

# 4.19 DIFU (ASCENDING EDGE SET)

- Instruction function Set the output signal to 1 when the ascending edge of input signal is valid.
- Ladder format



• Control condition

Input signal ACT: the output signal is set to 1 at the ascending edge of ACT (0->1). Output signal Add.b: when it is executed, one scanning period of Add.b in ladder is 1.

• Relative parameter

add.b : it is the operation result output address and its address is Y, G, R, A and K.

• Program example



Explanation: R0040.0 output is 1 when X0003.3 reaches the ascending edge.

# 4.20 DIFD (DESCENDING EDGE SET)

#### Instruction function

Set the output signal to 1 when drift down of input signal is valid.

• Ladder format



• Control condition

Input signal ACT: the output signal is set to 1 at the descending edge of ACT (1->0).

Output signal Add.b: when it is executed, one scanning period of Add.b in ladder is 1.



Add.b : it is the operation result output address and its address is Y, G, R, A and K.





Explanation: R0040.0 output is 1 when X0003.3 reaches the descending edge.

# 4.21 MOVE (AND)

• Instruction function

Logic multiply and input data execute logic and operation, and then the system output the result to the specified address.

• Ladder format



## Control condition

ACT=1: Logic multiply (HIGH4、 LOW4) and input data (Addr\_In) execute logical operation, and output the result to the specified address (Addr\_Out), which can remove the needless number of bit from 8-bit signal of the specified address.

ACT=0: Addr\_Out is reserved.

## • Relative parameter

HIGH4 : high 4-bit logic multiply

- LOW4 : low 4-bit logic multiply
- Addr\_In : input data address. Its address number is R, A, K, X, Y, F, G, and D.

Addr\_Out: output data address. Its address number is R, A, K, X, Y, F, G, and D.

#### • Program example:



Explanation: When X0003.3 is 1, logically execute R0010 and 01001110 to save its result to R0020.

# 4.22 ALT (ALTERNATIVE OUTPUT)

#### • Instruction function

It is alternative output instruction. The output signal outputs reversely when the ascending edge of input signal changes  $(0 \rightarrow 1)$ .

#### • Ladder format

| ACT | [  | _      |       |
|-----|----|--------|-------|
|     | AL | 「   Ad | ldr.b |

• Control condition

The output signal Add.b outputs reversely when the input signal ACT changes  $0 \rightarrow 1$  every time.

#### • Relative parameter

Add.b: it is the output signal and its address is Y, G, R, A and K.

• Program example:

|      | X0003.3 |        |           |
|------|---------|--------|-----------|
| 0002 |         | - 01 T | 00000 0 L |
|      | 11      |        | R0033.0   |
|      |         |        |           |
|      |         |        |           |

Explanation: R0033.0 oversets one time when X0003.3 reaches the ascending edge every time.

# BOOK 2

# FUNCTION

# Chapter 1 AXES CONTROL SIGNAL

GSK980TD defines 4 axes: Axis 1, 2, 3 and 4. The detailed functions of each axis vary from one software version to another. Now only Axis 1 and 2 are controllable, i.e. Axis X and Z.

## **1.1 AXIS MOVING STATUS**

NC can transmit current axis moving status to PLC, and then PLC works according to the status of axis moving.

#### 1.1.1 Feed Axis and Direction Selection Signal

#### +J1~+J4 (G100.0~G100.3)

- -J1~-J4 (G102.0~G102.3)
  - Signal type:  $PLC \rightarrow NC$
  - Signal functions: For detailed functions, please refer to section 3.1.1.

#### 1.1.2 Axis Moving Signal

#### MV1~MV4 (F102.0~F102.3)

- Signal type: NC→PLC
- Signal functions: MV1, MV2, MV3, MV4 are moving signals for Axis 1, 2, 3, 4 respectively. When an axis is moving, NC sets corresponding axis moving signal to 1. When an axis stops moving, the axis moving signal is 0.

| • | Signal | addresses:  |
|---|--------|-------------|
| - | Signar | uuuu cooco. |

| F102 |  |  | MV4 | MV3 | MV2 | MV1 |
|------|--|--|-----|-----|-----|-----|
|      |  |  |     |     |     |     |

#### 1.1.3 Axis Moving Direction Signal

#### MVD1~MVD4 (F106.0~F106.3)

- Signal type: NC $\rightarrow$ PLC
- Signal functions: MVD1, MVD2, MVD3, MVD4 are axis moving direction signals for Axis 1, 2, 3, 4 respectively. When an axis is moving backwards, NC sets the axis moving direction signal to 1; when an axis is moving forward, the axis moving direction signal is 0; If an axis stops moving, the direction signal will be 1 or 0 depending on the moving status before the axis stopping.
- Signal addresses:

| F106 |  |  | MVD4 | MVD3 | MVD2 | MVD1 |
|------|--|--|------|------|------|------|
|      |  |  |      |      |      |      |

## 1.2 SERVO READY SIGNAL

#### SA (F000.6)

● Signal type: NC→PLC

# ᇫ┌℠州数控

• Signal functions: When CNC gives out a warning, NC sets SA signal to 0 to stop axis moving. When the warning is cancelled, NC sets SA to 1 to move axis again.

• Signal address:

| FO |  | SA |  |  |  |
|----|--|----|--|--|--|
|    |  |    |  |  |  |

# Chapter 2 PREPARATION for OPERATION

## **2.1 EMERGENT STOP**

#### Emergency stop signal ESP (X0.5):

- Signal type: machine tool  $\rightarrow$  NC
- Signal function: If external emergency stop signal X0.5 is not shielded and is detected to be 0, CNC will give out an emergency stop warning (no matter whether PLC program is configured in CNC or not). At this time CNC resets, and the machine tool stops running.
- Signal address:

|    | - |  |     |  |  |  |
|----|---|--|-----|--|--|--|
| X0 |   |  | ESP |  |  |  |
|    |   |  |     |  |  |  |

#### Emergency stop signal ESP (G8.4):

● Signal type: PLC→NC

• Signal function: If the voltage of G8.4 is 0, once NC detects this signal, an emergency stop warning will be given out.

• Signal address:

|           | - |  |     |  |  |
|-----------|---|--|-----|--|--|
| <b>G8</b> |   |  | ESP |  |  |
|           |   |  |     |  |  |

# 2.2 CNC READY SIGNAL

#### MA (F001.7):

- Signal type: NC→PLC
- Signal function: CNC Ready Signal indicates that CNC is ready for working.
- Output conditions: When CNC is powered on without warning, F1.7 will be set to 1 in several seconds. otherwise, CNC ready signal will be 0.
- Signal address:

F001

| _ |       |  |  |  |  |
|---|-------|--|--|--|--|
|   |       |  |  |  |  |
|   | 3.7.4 |  |  |  |  |
|   | VIA   |  |  |  |  |
|   |       |  |  |  |  |
|   |       |  |  |  |  |

## 2.3 CNC OVERTRAVEL SIGNAL

#### +L1~+L4(G114.0~G114.3)

#### -L1~-L4(G116.0~G116.3)

- Signal type: PLC→NC
- Signal functions: If a tool moves beyond the distance which the machine limit switch sets, the limit switch starts working, the tool slows down and then stops, and overtravel alarm is given out. This signal indicates that control axis already reaches the limit distance. Every direction of each control axis has this signal. "+" and "-" displays the direction, and the number means corresponding axis name.



- Output conditions: If CNC overtravel signal is 0, the control unit will response as follows:
  - \*During automatic operation, if any one of the axis overtravel signal is 0, all axes will slow down and stop, also alarm will be given out.
  - \*During manual operation, only the axis with a moving signal of 0 is going to slow down and stop. The axis can move backwards after it stops.

\*Once an axis overtravel signal turns to 0, the moving direction will be saved in the memory. Even though the signal changes to 1 again before the warning is cancelled, the axis cannot move on in the foregoing direction.

• Signal addresses:



# 2.4 ALARM SIGNAL

#### AL (F001.0):

- Signal type: NC $\rightarrow$ PLC
- Signal functions: When an alarm is given out, the cause message of the alarm will be displayed, and NC will set F1.0 signal to 1. There are two types of alarm: PLC alarm and CNC alarm. When the alarm is cancelled and CNC resets, F1.0 will turns to 0.
- Signal address:



# 2.5 START LOCK SIGNAL

#### STLK (G007.1)

- Signal type: PLC→NC
- Signal functions: When PLC sets G7.1 to 1, and transmits to NC, NC control axis slows down and stops. During automatic operation, if G7.1 is 1, and the commands before axis moving command block contain M, S, T commands, M, S, T commands can execute constantly until all the axis moving command blocks are finished and axis slows down and stops. Unless G7.1 signal is 0, program can restart.
- Signal address:

| G007 STLK |      |  |  |  |      |  |
|-----------|------|--|--|--|------|--|
|           | G007 |  |  |  | STLK |  |

## **2.6 MODE SELECTION**

Mode selection signals include MD1, MD2, MD4, DNC1 and ZRN. Eight types of work mode can be selected: Edit mode, Auto mode, MDI mode, Jog mode, Handwheel mode/Increment mode, Machine Reference Point Return mode and Program Reference Point Return mode. CNC outputs work mode detection signals and informs PLC which working mode CNC is using.

#### 2.6.1 Mode Selection Signal

#### MD1, MD2, MD4(G043.0~G043.2) DNC1(G043.5) ZRN (G043.7):

- Signal type: PLC→NC
- Signal function: Work mode codes are as follows.

| No. | Code signal                         | 7DN  | DNC1  | MD4 | MD2  | MD1 |
|-----|-------------------------------------|------|-------|-----|------|-----|
|     | Work mode                           | ZKIN | DINCI | MD4 | WID2 | MDT |
| 1   | Edit mode                           | 0    | 0     | 0   | 1    | 1   |
| 2   | Auto mode                           | 0    | 0     | 0   | 0    | 1   |
| 3   | MDI mode                            | 0    | 0     | 0   | 0    | 0   |
| 4   | Handwheel mode/Increment mode       | 0    | 0     | 1   | 0    | 0   |
|     | (HANDLE/INC)                        |      |       |     |      |     |
| 5   | Jog mode (JOG)                      | 0    | 0     | 1   | 0    | 1   |
| 9   | Machine Reference Point Return mode | 1    | 0     | 1   | 0    | 1   |
|     | (REF)                               |      |       |     |      |     |
| 10  | Program Reference Point Return mode | 0    | 0     | 0   | 1    | 0   |
|     | (PROG_ZERO)                         |      |       |     |      |     |

PLC sets a value/digit to a Code signal, and then transfers to NC. NC will determine the working method of CNC according to the code signal value.

• Signal addresses:

| G43 | ZRN | DNCI |  | MD4 | MD2 | MD1 |
|-----|-----|------|--|-----|-----|-----|
|     |     |      |  |     |     |     |

#### 2.6.2 Work Mode Detection Signal

#### MINC(F3.0), MH(F3.1), MJ(F3.2), MMDI(F3.3), MMEM(F3.5), MEDT(F3.6), MREF(F4.5), MPST(F4.6)

- Signal type: NC $\rightarrow$ PLC
- Signal functions: when CNC is working under a certain mode, if related "F" signal is set to 1, and transmitted to PLC, PLC can be informed about the current working method.

| Increment mode detection signal                      | MINC |
|------------------------------------------------------|------|
| Handwheel mode detection signal                      | MH   |
| Jog mode detection signal                            | MJ   |
| MDI mode detection signal                            | MMDI |
| Auto mode detection signal                           | MMEM |
| Edit mode detection signal                           | MEDT |
| Machine Reference Point Return mode detection signal | MREF |
| Program Reference Point Return mode detection signal | MPRO |



• Signal addresses:

| F3 |  | MEDT | MMEM | MMDI | MJ | MH | MINC |
|----|--|------|------|------|----|----|------|
| F4 |  | MPRO | MREF |      |    |    |      |

#### 2.6.3 Sequence of Work Mode Signals









0026

0027

41

F0003.1

**Book 2 Function** 

incremental mode

# ᇫ┌╴州数控

## GSK980TD Turning Machine CNC



# 2.7 STATUS OUTPUT

#### 2.7.1 Rapid Feed Signal

#### RPDO (F002.1);

- Signal type: NC $\rightarrow$ PLC
- Signal function: CNC feeds signals rapidly
- Notes: When an axis feeds rapidly, NC sets F2.1 to be 1. If the feeding stops, F2.1 remains at the same status, and then selects the "un-rapid" feeding, moves the axis or resets CNC, then F2.1 will change to 0.
- Signal address:

| F2 |  |  |  | PRDO |  |
|----|--|--|--|------|--|
|    |  |  |  |      |  |

#### 2.7.2 Cutting Feed Signal

#### CUT (F002.6):

- Signal type: NC $\rightarrow$ PLC
- Signal function: when CNC is performing cutting feed (linear interpolation, circular interpolation, helical interpolation, thread cutting, skip cutting or fixed cycle cutting), NC sets F2.6 to 1, and then transmits to PLC. When it changes to rapid feed, F2.6 turns to be 0.

• Signal address:

| F2 |  | CUT |  |  |  |
|----|--|-----|--|--|--|
|    |  |     |  |  |  |

## 2.7.3 Tap Cutting Signal

#### TAP (F1.5):

- Signal type: NC→PLC
- Signal functions: when CNC is performing tap cutting, NC sets F1.5 to 1. When CNC is not performing tap cutting, and under the state of emergency stop or reset, NC sets F1.5 to 0.
- Signal address:

| F1 |  | ТАР |  |  |  |
|----|--|-----|--|--|--|
|    |  |     |  |  |  |

## 2.7.4 Thread Cutting Signal

#### THRD (F2.3):

- Signal type: NC $\rightarrow$ PLC
- Signal functions: when CNC is executing thread cutting, NC sets F2.3 to 1. While on the contrary F2.3 is 0.
- Signal address:

| 0  |  |  |      |  |  |
|----|--|--|------|--|--|
| F2 |  |  | THRD |  |  |
|    |  |  |      |  |  |

# Chapter 3 MANUAL OPERATION

#### **3.1 JOG FEED/INCREMENTAL FEED**

Jog feed: In the jog mode, if the feed axis and direction selection signal is set to 1, the tool moves continuously along the selected axis in the selected direction.

Incremental feed: In the incremental mode, if the feed axis and direction selection signal is set to 1, the tool moves one step along the selected axis in the selected direction. The minimum distance the tool is moved is the least input increment. Each step can be 0.001, 0.010 or 0.100 times.

The only difference between jog feed and incremental feed is the method of selecting feed distance. In the jog mode, when the feed axis and direction selection signal +J1, -J1, +J2, -J2, +J3, -J3 is 1, the tool can move/feed continuously. While in the incremental mode, the tool only moves one step.

By pressing the jog rapid traverse feed selection switch, the tool can be moved at the rapid traverse federate. In the incremental feed mode, the distance of each step can be selected by MP1, MP2.

#### 3.1.1 Feed Axis and Direction Selection Signal

#### +J1~+J4 (G100.0~G100.3)

- -J1~-J4 (G102.0~G102.3)
  - Signal type: PLC→NC
  - Signal functions: In the jog feed or incremental feed mode, select a feed axis and a direction, perform axis moving, and NC sets the corresponding axis and direction selection signal to 1. "+", "-" indicates feed direction. The number indicates axis number.



- Notes: A: In the jog feed mode, CNC makes the selected axis moving continuously. In the incremental feed mode, CNC makes the selected axis moving according to the specified rate defined by MP1, MP2 signals.
  - B: When an axis is moving, NC sets the axis and direction selection signal to 1. When the axis stops moving, the signal changes to 0.

• Signal addresses:

| G100 |  |  | + <b>J4</b> | +J3 | +J2 | +J1 |
|------|--|--|-------------|-----|-----|-----|
| G102 |  |  | -J4         | -J3 | -J2 | -J1 |

## 3.1.2 Manual Feed Override Signal

#### JV00~JV15 (G10, G11):

- Signal type: PLC  $\rightarrow$ NC
- Signal functions: Select manual feed override. The following table shows the relationship between signals and manual feed override. PLC sets a value to G10, G11 and transmits to NC. Then NC sets override based on the value of G10, G11.

| G11       | G10       | Override(%) | Feed speed (mm/min) |
|-----------|-----------|-------------|---------------------|
| 0000 0000 | 0000 1111 | 0           | 0                   |
| 0000 0000 | 0000 1110 | 10          | 2.0                 |
| 0000 0000 | 0000 1101 | 20          | 3.2                 |
| 0000 0000 | 0000 1100 | 30          | 5.0                 |
| 0000 0000 | 0000 1011 | 40          | 7.9                 |
| 0000 0000 | 0000 1010 | 50          | 12.6                |
| 0000 0000 | 0000 1001 | 60          | 20                  |
| 0000 0000 | 0000 1000 | 70          | 32                  |
| 0000 0000 | 0000 0111 | 80          | 50                  |
| 0000 0000 | 0000 0110 | 90          | 79                  |
| 0000 0000 | 0000 0101 | 100         | 126                 |
| 0000 0000 | 0000 0100 | 110         | 200                 |
| 0000 0000 | 0000 0011 | 120         | 320                 |
| 0000 0000 | 0000 0010 | 130         | 500                 |
| 0000 0000 | 0000 0001 | 140         | 790                 |
| 0000 0000 | 0000 0000 | 150         | 1260                |

**Book 2 Function** 

• Signal addresses:

G10 G11

| JV07 | JV06 | JV05 | JV04 | JV03 | JV02 | JV01 | JV00 |
|------|------|------|------|------|------|------|------|
| JV15 | JV14 | JV13 | JV12 | JV11 | JV10 | JV09 | JV08 |

## 3.1.3 Rapid Traverse Selection Signal

#### RT (G019.7)

- Signal type: PLC→NC
- Signal functions: PLC sets G19.7 to 1 and transmits to NC to select jog rapid traverse. During the time of rapid traverse, either G19.7 changes from 1 to 0, or from 0 to 1, feed speed will drop to 0 at first, and then increase up to stated value. In the process of speed decreasing, feed axis and direction selection signal remains unchanged.
- Signal addresses:

| G19 | RT |  |  |  |  |
|-----|----|--|--|--|--|
|     |    |  |  |  |  |



#### **3.1.4 Manual Feed Override Control Flowchart**





## **3.2 HANDWHEEL FEED**

In manual handle feed mode, the tool can be minutely moved by rotating the handle. An axis can be selected according to the handle feed axis selection signal.

#### 3.2.1 Handwheel Feed Axis Selection Signal

#### HS1A (G18.0), HS1B (G18.1)

- Signal type: PLC→NC
- Signal type: PLC sets a value to handwheel feed axis selection signal G18.0, G18.1, and transmits to NC. NC selects appropriate axis to feed based on the value of G18.0, G18.1. The relationship between signals G18.0, G18.1 and handwheel feed axis is as follows:

| HS1B (G18.1) | HS1A (G18.0) | Feed axis             |
|--------------|--------------|-----------------------|
| 0            | 0            | No feed axis selected |
| 0            | 1            | Axis 1 is selected    |
| 1            | 0            | Axis 2 is selected    |
| 1            | 1            | Axis 3 is selected    |

• Signal addresses:

| G18 |  |  |  | HS1B | HS1A |
|-----|--|--|--|------|------|
|     |  |  |  |      |      |

#### 3.2.2 Handwheel / Increment Override Signal

#### MP1(G19.4), MP2(G19.5):

- Signal type: PLC→NC
- Signal functions: MP1, MP2 can select the moving distance of each pulse during the handwheel feed, and also can select the moving distance of each step during the incremental feed. PLC sets a value to G19.4, G19.5, and transmits to NC. NC adjusts override according to the value of G19.4, G19.5. See below table for detailed relationship:

|                   | MP2<br>(G19.5) | MP1 (G19.4) | Moving distance<br>(mm) |
|-------------------|----------------|-------------|-------------------------|
|                   | 0              | 0           | 0.001                   |
|                   | 0              | 1           | 0.010                   |
|                   | 1              | 0           | 0.100                   |
| Signal addresses: | 1              | 1           | 1.000                   |
| G19               |                |             |                         |



#### **3.2.3 Handwheel Override Control Flowchart**

# 盧г℠州数控

| 0017 | K0019.5 |                | G0019.5 |                       |
|------|---------|----------------|---------|-----------------------|
| 0018 | K0019.4 | К0019.5<br>—-И | Y0007.7 | Y7.7: 0.01 indicator  |
| 0019 | K0019.4 | K0019.5        | Y0007.6 | Y7.6 : 0.01 indicator |
| 0020 | K0019.4 | K0019.5        | Y0007.5 | Y7.5: 0.1 indicator   |
| 0021 | END2    |                |         |                       |

# Chapter 4 MACHINE / PROGRAM REFERENCE POINT RETURN

## **4.1 MACHINE REFERENCE POINT RETURN**

In the mode of Machine reference point Return, by setting the feed axis and direction selection signals to 1, the tool can move along the specified direction, and return to machine reference point position. After returning to machine reference point position, CNC sets a workpiece coordinate system based on the values of NO.049, NO.050.

#### 4.1.1 Machine Reference Point Return End Signal

#### ZP1~ZP4(F094.0~F094.3):

- Signal type:  $NC \rightarrow PLC$
- Signal function: When an axis ends the machine reference point return, NC will set the related F signal to 1, and transmit to PLC. This is to inform the axis that the machine reference point return already ends. ZP1, ZP2, ZP3, ZP4 signals are machine reference point return end signals for Axis 1, 2, 3, 4 respectively.
- Notes: When machine reference point return has already ended (and G28 command returns to zero), and the current position is within the specified area, the machine reference point return end signal turns to 1. When the tool moves away from machine reference point point, the machine reference point return end signal changes to 0.

#### 4.1.2 Deceleration Signal in Machine Reference Point Return

#### XDEC (X09.0), ZDEC (X09.1);

- Signal type: machine tool $\rightarrow$ NC
- Signal functions: As soon as NC receives the deceleration signal in machine reference point return, the moving speed will be decelerated, until the machine tool returns to machine reference point position at a low rate. XDEC, ZDEC signals are machine reference point return deceleration signals for Axis X, Z respectively.

| • | Signal ad | dresses: |  |  |  |      |      |
|---|-----------|----------|--|--|--|------|------|
|   | X9        |          |  |  |  | ZDEC | XDEC |

#### 4.1.3 Machine Reference Point Setting Signal

#### ZRF1~ZRF4(F120.0~F120.4)

- Signal type: NC→PLC
- Signal functions: After ending NC machine reference point return and setting a machine reference point point, the corresponding machine reference point establish signal is set to 1, and then it is transmitted to PLC. ZRF1, ZRF2, ZRF3, ZRF4 signals are machine reference point establish signals for Axis 1, 2, 3, 4 respectively.



# Machine reference point return end indicator (Y4.7, Y4.5)

# 4.2 PROGRAM REFERENCE POINT RETURN

Under the status of Program reference point Return, Program reference point Return executes and makes the tool moving to G50 position at a rapid speed. While during the time of program automatic executing, if a program stops, the program returns to zero, the tool will return to program start position, and cancel tool offset. If program reference point is not saved in the memory, when the program reference point return command is executing, an alarm occurs. If program reference point is saved, then the program is started up, the position of the tool when G50 block is executing will be saved in the memory automatically. Once the zero point is saved, it will keep unchanged until a new zero point is saved. i.e. when executing Program A, zero point A is saved; Then when executing Program B (if G50 is included), zero point A will be replaced by zero point B.

## 4.2.1 Program Reference Point Return End Signal

## PRO1~PRO4 (F198.0~F198.3):

- Signal type: NC $\rightarrow$ PLC
- Signal functions: When program reference point return ends, the tool will stay at the program reference point point. NC will set the program reference point return end signal to 1, and transmit to PLC, which informs PLC that the program reference point return is ended. PRO1, PRO2, PRO3, PRO4 are program reference point return end signals for Axis 1, 2, 3, 4 respectively.
- Note: When the tool moves away from program reference point, the signal of program reference point return turns to 0.

| <ul> <li>Signal addresses:</li> </ul> |  |  |      |      |      |      |
|---------------------------------------|--|--|------|------|------|------|
| F198                                  |  |  | PRO4 | PRO3 | PRO2 | PRO1 |

## 4.2.2 Sequence of Program Reference Point Return Signals



# Chapter 5 AUTOMATIC OPERATION

## **5.1 CYCLE START/FEED HOLD**

• Cycle start (start automatic operation):

In the mode of automatic or inputting method, when automatic operation start signal ST is effective, programs start running.

1. Under the following conditions, ST signal is ignored:

- A: any other methods except automatic method or inputting method
- B: feed hold signal (SP) is 0
- C: emergency stop signal (ESP) is 0
- D: external reset signal (ERS) is 1
- E: press "reset" button on the operator's panel
- F: CNC is warning
- G: automatic operation has already started
- H: program restart signal (SRN) is 1
- I: CNC is searching for a sequence number
- 2. During automatic operation, CNC performs feed hold under the following conditions:
  - A: feed hold signal (SP) is 0
  - B: change to manual method, wheel method, single step method, machine zero return, or program zero return
  - C: single block command is finished
  - D: already finished inputting
  - E: CNC is warning
  - F: After changing to editing method, single block command is finished.
- 4. During automatic operation, CNC keeps in "reset" status and stops running under the following conditions:
  - A: emergency stop signal (ESP) is 0
  - B: external reset signal (ERS) is 1
  - C: press "reset" button on the operator's panel

• Feed hold (pause automatic operation) :

During automatic operation, when the feed hold signal SP is 0, CNC pauses and stops running. At the same time cycle start indictor signal (STL) is set to 0, feed hold signal (SPL) is set to 1, even though SP is set to 1, the machine will not restart and operate automatically. Unless SP is set to 1, and ST signal is effective, the machine can restart and operate automatically.

When executing program blocks with only M, S, T commands, SP signal is set to 0, STL will be 0 immediately, SPL signal is 1, and CNC performs feed hold. When FIN signals are received from PLC, CNC continues executing the paused program blocks. After finish executing, SPL signal is 0 (STL signal is 0), CNC stops automatic operation.

While G92 command (thread cutting cycle) is executing, SP signal is 0, and SPL signal changes to 1 immediately, but the operation keeps running until cutter withdrawal is finished after thread cutting.

While G32 command (thread cutting) is executing, SP signal is 0, and SPL signal changes to 1 immediately, but the operation keeps running until the non-thread cutting program block is finished executing after the thread cutting block.

While G84 command (fixed tap cycle) is executing, SP signal is 0, SPL signal changes to 1 immediately, but the operation keeps running until the cutter returns to start position or R position after tap cutting is finished.

While executing macro command, after macro command is finished, it stops operating.
# 5.1.1 Cycle Start Signal

### ST (G007.2):

- Signal type: PLC→NC
- Signal function: under the automatic or editing method, PLC sets G7.2 to 1, and then sets to 0, and transmits to NC. NC starts automatic operation.
- Signal address:

| ~-8 | <br> |  |  |    |  |
|-----|------|--|--|----|--|
| G7  |      |  |  | ST |  |
|     |      |  |  |    |  |

## 5.1.2 Feed Hold Signal

#### SP (G008.5)

- Signal type:  $PLC \rightarrow NC$
- Signal function: PLC sets G8.5 to 0, and transmits to NC. NC starts automatic operation. If G8.5 is 0, programs cannot restart.

• Signal address:

| G8 | SP |  |  |  |
|----|----|--|--|--|
|    |    |  |  |  |

# 5.1.3 Cycle Start Light Signal

### STL (F000.5)

- Signal type:  $NC \rightarrow PLC$
- Signal function: when NC is on automatic operation, STL is set to 1 and transmitted to PLC.
- Signal address:

|  | FO |  |  |  | STL |  |  |  |  |  |
|--|----|--|--|--|-----|--|--|--|--|--|
|--|----|--|--|--|-----|--|--|--|--|--|

## 5.1.4 Feed Hold Light Signal

### SPL (F000.4)

- Signal type: NC $\rightarrow$ PLC
- Signal function: when NC is paused, SPL is set to 1 and transmitted to PLC.
- Signal address:

| EO   |  |  | CDI |  |  |
|------|--|--|-----|--|--|
| FU - |  |  | SPL |  |  |
| - •  |  |  |     |  |  |
|      |  |  |     |  |  |

## 5.1.5 Automatic Operation Signal

### OP (F000.7)

● Signal type: NC→PLC

• Signal function: when NC is on automatic operation, OP is set to 1 and transmitted to PLC. The relationship among

STL, SPL and OP is as follows:

|                    | Cycle start light STL | Feed hold light SPL | Automatic operation |
|--------------------|-----------------------|---------------------|---------------------|
|                    |                       |                     | OP                  |
| Cycle start status | 1                     | 0                   | 1                   |
| Feed hold status   | 0                     | 1                   | 1                   |

|     | Automatic operation | 0  | 0 | 0 |   |
|-----|---------------------|----|---|---|---|
|     | status              |    |   |   |   |
|     | Reset status        | 0  | 0 | 0 |   |
| • S | ignal address:      |    |   |   | - |
|     | FO                  | OP |   |   |   |

# **5.2 RESET**

Under the following conditions, CNC starts "reset" status.

- A: Emergency stop signal (ESP) is 0
- B: External reset signal (ERS) is 1
- C: Press the "reset" button on the panel

Except the above conditions, after the time specified by parameter NO.071, reset signal RST changes to 0. RST time= $T_{reset}$  (reset processing time) + reset signal output time (parameter NO.071)



During automatic operation, once CNC is reset, automatic operation stops, and the tool slows down along the controlled axis until stops in the end. If CNC is executing M, S, T commands, when it is reset, MF, SF, TF signals will change to 0 in 8ms.

## 5.2.1 External Reset Signal

### ERS (G008.7)

- Signal type: PLC→NC
- Signal function: when PLC sets G8.7 to 1 and transmits to NC, CNC resets and RST signal becomes 1.

| • | Signal add | lress: |     |  |  |  |  |
|---|------------|--------|-----|--|--|--|--|
|   | <b>G8</b>  |        | ERS |  |  |  |  |

## 5.2.2 Reset Signal

#### RST (F001.1)

- Signal type: NC→PLC
- Signal function: when NC is reset, it sets RST to 1 and transmits to PLC. This is to inform PLC that CNC is reset.
- Note: Under the following conditions, RST is set to 1:
  - A: external emergency stop signal (ESP) is set to 0.
  - B: external reset signal (ERS) is set to 1
  - C: press the "reset" button on the panel

Except the above conditions, after the time specified by parameter NO.071, reset signal RST changes to 0.





# 5.2.3 Sequence of Start Operation



# **5.3 MACHINE LOCK**

When checking programs before running the machine, machine lock function can be used. Set all-axis machine lock signal (MLK) to 1. In the process of manual operation or automatic operation, the machine stops pulse output to servo motor. But CNC still keeps command assignment, and absolute coordinates and relative coordinates are updated. Monitoring the changes of the coordinates positions can check if the edited programs are correct or not.

### 5.3.1 All-axis Machine Lock Signal

#### MLK (G44.1)

- Signal type: PLC  $\rightarrow$ NC
- Signal functions: PLC sets G44.1 to 1, and transmits to NC. All axes are locked. Once G44.1 is set to 1, during the time of manual operation or automatic operation, CNC cannot output pulses to servo motor. Therefore the axis doesn't move.

• Signal address:

| -   |   |  |  |  |     |  |
|-----|---|--|--|--|-----|--|
| G44 |   |  |  |  | MLK |  |
|     | - |  |  |  |     |  |

# 5.3.2 Detection Signal of All-axis Machine Lock

#### MMLK (F004.1)

- Signal type: NC→PLC
- Signal function: When all axes are locked, NC sets F4.1 to 1 and transmits to PLC.

| • Signal add | dress: |  |  |  |      |
|--------------|--------|--|--|--|------|
| F4           |        |  |  |  | MMLK |

# **5.4 DRY DRUN**

Dry run is effective in the automatic operation mode. At dry run time, the tool moves at an invariable override, instead of moving at a override specified in the program. This function is used for checking the movement of the tool under the state that the workpiece is removed. The movement speed depends on manual feed override signal ( $JV0 \sim JV15$ ).

| Rapid traverse selection signal | Dry run speed           |
|---------------------------------|-------------------------|
| (RT)                            |                         |
| 1                               | Rapid traverse override |
| 0                               | Manual feed override    |

# 5.4.1 Dry Run Signal

### DRN (G46.7):

- Signal type: PLC→NC
- Signal function: PLC sets G46.7 to 1, and transmits to NC. Then the dry run starts.
- Notes: A: If G46.7 is 1, the tool moves at a override specified for dry run. If G46.7 is 0, the tool moves normally.
  B: When the tool is moving, and when G46.7 changes from 0 to 1 or from 1 to 0, the movement speed of the tool first drops down to 0, and then accelerates to a specified override.
- Signal address:

| 0   |     |  |  |  |  |
|-----|-----|--|--|--|--|
| G46 | DRN |  |  |  |  |
|     |     |  |  |  |  |

# 5.4.2 Detection Signal of Dry Run

### MDRN (F002.7):

- Signal type: NC→PLC
- Signal function: when a CNC is in the status of dry run, NC sets F2.7 to 1, and then transmits to PLC.

• Signal address:

F2

| MDRN |  |  |  |  |
|------|--|--|--|--|
|------|--|--|--|--|

# **5.5 SINGLE BLOCK**

Single block execution is effective in the automatic operation mode only. During the time of automatic operation, if single block signal(SBK) is set to 1, after the current block is executed, CNC starts feed hold. If single block signal(SBK) is set to 0, programs run normally.

## 5.5.1 Single Block Signal

### SBK (G046.1):

- Signal type: PLC→NC
- Signal function: When PLC sets G46.1 to 1, and transmits to NC. CNC starts single block executing.
- Signal address:

**G46** 

|  |  |  |  |  |  |  |  | SBK |  |
|--|--|--|--|--|--|--|--|-----|--|
|--|--|--|--|--|--|--|--|-----|--|

# 5.5.2 Detection Signal of Single Block

### MSBK (F004.3):

- Signal type: NC $\rightarrow$ PLC
- Signal function: when CNC is executing single block, NC sets F4.3 to 1 and transmits to PLC.
- Notes: A: thread cutting: during the time of thread cutting, SBK changes to 1. The executing stops until the first non thread cutting block is finished.
  - B: fixed cycle executing: during the time of fixed cycle executing, if SBK is set to 1, the executing stops when approaching drill and cutting withdrawal, instead of at the end of the program block.
- Signal address:

| F4 |  |   | MSBK |  |  |
|----|--|---|------|--|--|
|    |  | • |      |  |  |

# 5.6 OPTIONAL BLOCK JUMP

During automatic operation, if a slash "/" at the start of a block is specified, and the block jump signal BDT is set to 1, the program block is jumped and ignored.

# 5.6.1 Optional Block Jump Signal

### BDT (G44.0) :

- Signal type: PLC→NC
- Signal function: If PLC sets G44.0 to 1 and transmits to NC, CNC starts executing block jumping. Any program block with a slash "/" at the start of the block will not executed.
- Signal address:

| G44 |  |  |  |  | BDT |
|-----|--|--|--|--|-----|
|     |  |  |  |  |     |

# 5.6.2 Detection Signal of Jump Block

### MBDT (F04.0):

- Signal type: NC $\rightarrow$ PLC
- Signal function: when CNC is executing block jumping, NC sets F4.0 to 1 and transmits to PLC, which informs that PLC is running block jumping.
- Signal address:

| F4 |  |  |  |  | MBDT |
|----|--|--|--|--|------|
|    |  |  |  |  |      |

# Chapter 6 FEED SPEED CONTROL

# **6.1 RAPID TRAVERSE SIGNAL**

The rapid traverse speed of each axis can be controlled by parameters NO.022 and NO.023, rather than program setting. But rapid traverse speed can also be controlled by adjusting rapid traverse override.

#### **RPDO** (F2.1):

- •Signal type:  $NC \rightarrow PLC$
- •Signal function: When CNC is executing moving commands at a rapid traverse speed, NC sets F2.1 to 1, and transmits to PLC.
- Notes: A: If RPDO is 1, this indicates that an axis is moving after selecting rapid traverse mode; if RPDO is 0, it means an axis is moving after selecting null rapid traverse override.
  - B: In the automatic operation, rapid traverse includes all rapid traverse modes, such as fixed cycle position, machine zero return, etc, not only for G00 command. Manual rapid traverse also includes the rapid traverse in machine zero return.
  - C: Once rapid traverse is selected, the signal keeps to 1, even during the stop time, but changes until other feed speed is selected and moving is started.

•Signal address



# **6.2 RAPID TRAVERSE OVERIRDE**

Rapid traverse override has four levels F0, 25%, 50% and 100%. F0 override is specified by parameter NO.032.

In automatic method or manual method (including machine zero return, program zero return), actual moving rate is obtained through multiplying the value set by parameters NO.022, NO.023 by the rate value

### 6.2.1 Rapid Traverse Override Signal

#### ROV1, ROV2 (G014.0, G014.1)

- ●Signal type: PLC→NC
- •Signal function: PLC sets values to G14.0, G14.1 and transmits to NC. NC then sets the rapid traverse override according to the values of G14.0, G14.1. The override values of ROV1, ROV2 are shown in the following table:

| ROV2 (G14.1) | ROV1 (G14.0) | Override value |
|--------------|--------------|----------------|
| 0            | 0            | 100%           |
| 1            | 0            | 50%            |
| 0            | 1            | 25%            |
| 1            | 1            | FO             |

•Signal address

G14



# 6.2.2 Rapid Traverse Override Control Flowchart





# **6.3 FEED OVERRIDE**

Feed speed can be adjusted by feed override, and can be used for checking programs. For example, if the feed speed specified in the program is 100mm/min, when the feed override is adjusted to 50%, the tool moves at a speed of 50mm/min.

# 6.3.1 Feed Override Signal

### FV0~FV7 (G012):

- ●Signal type: PLC→NC
- •Signal function: PLC sets a value to G12 and transmits to NC. NC can set a feed override according to the value of
  - G12. The relationship between FV0 FV7 binary codes and feed override is shown below:

| $FV7 \sim FV0$ | $(G012.7 \sim G012.0)$                                                                                                                                                                                                                                                                  | Cutting feed override                                                                                                                                                                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 0000 1111                                                                                                                                                                                                                                                                               | 0%                                                                                                                                                                                                            |
|                | 0000 1110                                                                                                                                                                                                                                                                               | 10%                                                                                                                                                                                                           |
|                | 0000 1101                                                                                                                                                                                                                                                                               | 20%                                                                                                                                                                                                           |
|                | 0000 1100                                                                                                                                                                                                                                                                               | 30%                                                                                                                                                                                                           |
|                | 0000 1011                                                                                                                                                                                                                                                                               | 40%                                                                                                                                                                                                           |
|                | 0000 1010                                                                                                                                                                                                                                                                               | 50%                                                                                                                                                                                                           |
|                | 0000 1001                                                                                                                                                                                                                                                                               | 60%                                                                                                                                                                                                           |
|                | 0000 1000                                                                                                                                                                                                                                                                               | 70%                                                                                                                                                                                                           |
|                | 0000 0111                                                                                                                                                                                                                                                                               | 80%                                                                                                                                                                                                           |
|                | 0000 0110                                                                                                                                                                                                                                                                               | 90%                                                                                                                                                                                                           |
|                | 0000 0101                                                                                                                                                                                                                                                                               | 100%                                                                                                                                                                                                          |
|                | 0000 0100                                                                                                                                                                                                                                                                               | 110%                                                                                                                                                                                                          |
|                | 0000 0011                                                                                                                                                                                                                                                                               | 120%                                                                                                                                                                                                          |
|                | 0000 0010                                                                                                                                                                                                                                                                               | 130v                                                                                                                                                                                                          |
|                | 0000 0001                                                                                                                                                                                                                                                                               | 140%                                                                                                                                                                                                          |
|                | 0000 0000                                                                                                                                                                                                                                                                               | 150%                                                                                                                                                                                                          |
|                | 0000 1110         0000 1100         0000 1011         0000 1010         0000 1001         0000 1000         0000 0111         0000 0110         0000 0101         0000 0101         0000 0101         0000 0101         0000 0010         0000 0011         0000 0001         0000 0001 | 10%           20%           30%           40%           50%           60%           70%           80%           90%           100%           110%           120%           130v           140%           150% |

• Note: In automatic operation, actual feed speed = cutting feed speed x feed override.



# 6.3.2 Feed Override Control Flowchart



**Book 2 Function** 



# **6.4 OVERRIDE CANCEL SIGNAL**

## OVC (G006.4):

•Signal type:  $PLC \rightarrow NC$ 

•Signal function: PLC sets G6.4 to 1 and transmits to NC. NC will set the feed override to be 100%.



•Note: when OVC is 1, CNC operates as follows:

- A: no matter how the feed override signal is adjusted, the feed override remains unchanged 100%
- B: rapid traverse override and spindle override are not affected.

•Signal address:

|  | <b>G6</b> |  |  |  |  | OVC |  |  |  |  |
|--|-----------|--|--|--|--|-----|--|--|--|--|
|--|-----------|--|--|--|--|-----|--|--|--|--|

# Chapter 6 FEED SPEED CONTROL

# **6.1 RAPID TRAVERSE SIGNAL**

The rapid traverse speed of each axis can be controlled by parameters NO.022 and NO.023, rather than program setting. But rapid traverse speed can also be controlled by adjusting rapid traverse override.

#### **RPDO** (F2.1):

- •Signal type:  $NC \rightarrow PLC$
- •Signal function: When CNC is executing moving commands at a rapid traverse speed, NC sets F2.1 to 1, and transmits to PLC.
- Notes: A: If RPDO is 1, this indicates that an axis is moving after selecting rapid traverse mode; if RPDO is 0, it means an axis is moving after selecting null rapid traverse override.
  - B: In the automatic operation, rapid traverse includes all rapid traverse modes, such as fixed cycle position, machine zero return, etc, not only for G00 command. Manual rapid traverse also includes the rapid traverse in machine zero return.
  - C: Once rapid traverse is selected, the signal keeps to 1, even during the stop time, but changes until other feed speed is selected and moving is started.

•Signal address



# **6.2 RAPID TRAVERSE OVERIRDE**

Rapid traverse override has four levels F0, 25%, 50% and 100%. F0 override is specified by parameter NO.032.

In automatic method or manual method (including machine zero return, program zero return), actual moving rate is obtained through multiplying the value set by parameters NO.022, NO.023 by the rate value

### 6.2.1 Rapid Traverse Override Signal

#### ROV1, ROV2 (G014.0, G014.1)

- ●Signal type: PLC→NC
- •Signal function: PLC sets values to G14.0, G14.1 and transmits to NC. NC then sets the rapid traverse override according to the values of G14.0, G14.1. The override values of ROV1, ROV2 are shown in the following table:

| ROV2 (G14.1) | ROV1 (G14.0) | Override value |
|--------------|--------------|----------------|
| 0            | 0            | 100%           |
| 1            | 0            | 50%            |
| 0            | 1            | 25%            |
| 1            | 1            | FO             |

•Signal address

G14



# 6.2.2 Rapid Traverse Override Control Flowchart





# **6.3 FEED OVERRIDE**

Feed speed can be adjusted by feed override, and can be used for checking programs. For example, if the feed speed specified in the program is 100mm/min, when the feed override is adjusted to 50%, the tool moves at a speed of 50mm/min.

# 6.3.1 Feed Override Signal

### FV0~FV7 (G012):

- ●Signal type: PLC→NC
- •Signal function: PLC sets a value to G12 and transmits to NC. NC can set a feed override according to the value of
  - G12. The relationship between FV0 FV7 binary codes and feed override is shown below:

| $FV7 \sim FV0$ | $(G012.7 \sim G012.0)$                                                                                                                                                                                                                                                                  | Cutting feed override                                                                                                                                                                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 0000 1111                                                                                                                                                                                                                                                                               | 0%                                                                                                                                                                                                            |
|                | 0000 1110                                                                                                                                                                                                                                                                               | 10%                                                                                                                                                                                                           |
|                | 0000 1101                                                                                                                                                                                                                                                                               | 20%                                                                                                                                                                                                           |
|                | 0000 1100                                                                                                                                                                                                                                                                               | 30%                                                                                                                                                                                                           |
|                | 0000 1011                                                                                                                                                                                                                                                                               | 40%                                                                                                                                                                                                           |
|                | 0000 1010                                                                                                                                                                                                                                                                               | 50%                                                                                                                                                                                                           |
|                | 0000 1001                                                                                                                                                                                                                                                                               | 60%                                                                                                                                                                                                           |
|                | 0000 1000                                                                                                                                                                                                                                                                               | 70%                                                                                                                                                                                                           |
|                | 0000 0111                                                                                                                                                                                                                                                                               | 80%                                                                                                                                                                                                           |
|                | 0000 0110                                                                                                                                                                                                                                                                               | 90%                                                                                                                                                                                                           |
|                | 0000 0101                                                                                                                                                                                                                                                                               | 100%                                                                                                                                                                                                          |
|                | 0000 0100                                                                                                                                                                                                                                                                               | 110%                                                                                                                                                                                                          |
|                | 0000 0011                                                                                                                                                                                                                                                                               | 120%                                                                                                                                                                                                          |
|                | 0000 0010                                                                                                                                                                                                                                                                               | 130v                                                                                                                                                                                                          |
|                | 0000 0001                                                                                                                                                                                                                                                                               | 140%                                                                                                                                                                                                          |
|                | 0000 0000                                                                                                                                                                                                                                                                               | 150%                                                                                                                                                                                                          |
|                | 0000 1110         0000 1100         0000 1011         0000 1010         0000 1001         0000 1000         0000 0111         0000 0110         0000 0101         0000 0101         0000 0101         0000 0101         0000 0011         0000 0011         0000 0010         0000 0001 | 10%           20%           30%           40%           50%           60%           70%           80%           90%           100%           110%           120%           130v           140%           150% |

• Note: In automatic operation, actual feed speed = cutting feed speed x feed override.



# 6.3.2 Feed Override Control Flowchart



**Book 2 Function** 



# **6.4 OVERRIDE CANCEL SIGNAL**

## OVC (G006.4):

•Signal type:  $PLC \rightarrow NC$ 

•Signal function: PLC sets G6.4 to 1 and transmits to NC. NC will set the feed override to be 100%.



•Note: when OVC is 1, CNC operates as follows:

- A: no matter how the feed override signal is adjusted, the feed override remains unchanged 100%
- B: rapid traverse override and spindle override are not affected.

•Signal address:

|  | <b>G6</b> |  |  |  |  | OVC |  |  |  |  |
|--|-----------|--|--|--|--|-----|--|--|--|--|
|--|-----------|--|--|--|--|-----|--|--|--|--|

# Chapter 7 M S T Functions

When a maximum 8-digit number following M, S, T address is specified, the corresponding code signals and strobe signals are sent to PLC. PLC starts logic control according to these signals, as shown below:

|               | Program | ]                 | NC→PLC        |                 | End signal |
|---------------|---------|-------------------|---------------|-----------------|------------|
| Function      | address | Code signal       | Strobe signal | Distribution of | (PLC→NC)   |
|               |         |                   |               | end signal      |            |
| Miscellaneous | М       | M00~M31 (F10~F13) | MF (F7.0)     |                 |            |
| function      |         |                   |               |                 |            |
| Spindle speed | S       | S00~S31 (F22~F25) | SF (F7.2)     | DEN (F1.3)      | FIN (G4.3) |
| function      |         |                   |               |                 |            |
| Tool function | Т       | T00~T31 (F26~F29) | TF (F7.3)     |                 |            |

The process is as follows: (change M code to S, T code, i.e. the process of spindle speed function and tool function)

- A: Supposed M\_ \_ is specified in the program, while CNC doesn't specify, an alarm occurs.
- B: After sending code signals M00 M31 to PLC, and strobe signal MF is set to 1, code signal uses binary system to express program command value \_ \_. If moving is paused, spindle speed or other functions are commanded together with auxiliary functions, after code signals of the auxiliary functions are sent, other functions start executing.
- C: When strobe signal MF is 1, PLC reads the code signal and executes corresponding operations.
- D: If move command and pause command is included in a program block, in order to execute auxiliary functions after move commands and pause commands are finished, have to wait until DEN signal changes to 1.
- E: When operation stops, PLC sets the end signal FIN to 1. End signal is used for auxiliary functions, spindle speed functions and tool functions. If all these functions are executed at the same time, end signal FIN changes to 1 until all functions are stopped.

F: When end signal FIN becomes 1 for a period of time, CNC can set the strobe signal to 0 and confirm end signal is received.

- G: Until strobe signal is 0, PLC can set FIN to 0.
- H: When FIN is 0, CNC sets all code signals to 0 and stops all the sequence operation of the auxiliary function. (While executing spindle speed function and tool function, code signal keeps unchanged until a new code is specified.)
- I: After commands in a same block is finished, CNC starts executing next block.

In application, the following sequences can be selected as per logical requirements: If there is one auxiliary function in the block, PLC uses the following sequence:



When move command and auxiliary function are in a same block, if PLC executes auxiliary function before move command ends, it executes in the following sequence:



When move command and auxiliary function are in a same block, if PLC executes auxiliary function after move command ends, it executes in the following sequence:





## 7.1.1 Code Signal and Strobe Signal

### Code signal: M00~M31 (F010~F013), strobe signal: MF (F007.0)

- ●Signal type: NC→PLC
- •Signal functions: After CNC executes M code, NC sends M code to PLC via F10 F13, and sets MF to 1, to start logical control. For related output conditions and executing processes, please refer to above descriptions. The relationship between M command and code signal number is as follows:

Chapter 7 M S T Functions

| F013, F012, F011, F010                 | M command |
|----------------------------------------|-----------|
| 00000000, 00000000, 00000000, 00000000 | M00       |
| 00000000, 00000000, 00000000, 00000001 | M01       |
| 00000000, 00000000, 00000000, 00000010 | M02       |
| 00000000, 00000000, 00000000, 00000011 | M03       |
| 00000000, 00000000, 00000000, 00000100 | M04       |
| 00000000, 00000000, 00000000, 00000101 | M05       |
| 00000000, 00000000, 00000000, 00000110 | M06       |
| 00000000, 00000000, 00000000, 00000111 | M07       |
| 00000000, 00000000, 00000000, 00001000 | M08       |
|                                        |           |

- Notes: The following auxiliary function commands cannot be output even if they are instructed in CNC programs:
  - A: M98, M99
  - B: M code for subprogram call
  - C: M code for custom macro program call

• Signal addresses:

F10 F11 F12 F13 F7

| 1407 | MOC | N/05 | MOA | MOO | 1403 | M01 | M |
|------|-----|------|-----|-----|------|-----|---|
| M07  | M06 | M05  | M04 | M03 | MOZ  | M01 | M |
| M15  | M14 | M13  | M12 | M11 | M10  | M09 | Μ |
| M23  | M22 | M21  | M20 | M19 | M18  | M17 | Μ |
| M31  | M30 | M29  | M28 | M27 | M26  | M25 | Μ |
|      |     |      |     |     |      |     | N |

# 7.1.2 M Code Signal

### DM00 (F009.7), DM01 (F009.6), DM02 (F009.5), DM30 (F009.4):

- •Signal type: NC $\rightarrow$ PLC
- •Signal function: When CNC is executing M00, M01, M02, M30 commands, NC sets corresponding code signals DM00, DM01, DM02, DM30 to 1.

| Program command | Code signal |
|-----------------|-------------|
| M00             | DM00        |
| M01             | DM01        |
| M02             | DM02        |
| M30             | DM30        |

- Notes: 1: Under the following conditions, M code signal is 1: related auxiliary function is specified, and other move commands and pause commands are finished in a same block. (If NC receives FIN signal before move command and pause command end, M code signal will not be outputted.)
  - 2: When FIN signal is 1 or the tool is reset, M code signal is 0.
  - 3: While executing M00, M01, M02, M30, code signals DM00, DM01, DM02, DM30 and code signals M00 M31 and strobe signal MF are all outputted at the same time.

| <ul> <li>Signal address</li> </ul> |      |      |      |      |  |  |
|------------------------------------|------|------|------|------|--|--|
| F9                                 | DM00 | DM01 | DM02 | DM30 |  |  |

# 7.2 Spindle Speed Function (S Function)

### Spindle speed code signal S00 - S31 (F022 - F025), spindle speed strobe signal SF (F007.2)

- ●Signal type: NC→PLC
- •Signal function: After CNC executes S code, NC sends S code to PLC via F22 F25, and then sets SF to 1, and transmits to PLC for logical control. For output conditions and executing progresses, please refer to related description. The relationship between S command and binary code signal is shown in the below table:

| F025, F024, F023, F022                 | S command |
|----------------------------------------|-----------|
| 00000000, 00000000, 00000000, 00000000 | S00       |
| 0000000, 0000000, 0000000, 00000001    | S01       |
| 00000000, 00000000, 00000000, 00000010 | S02       |
| 00000000, 00000000, 00000000, 00000011 | S03       |
| 0000000, 0000000, 0000000, 00000100    | S04       |
|                                        |           |
|                                        |           |
|                                        |           |

• Signal addresses:

| F22 | <b>S07</b> | <b>S06</b> | S05 | S04 | S03 | S02 | S01        | <b>S00</b> |
|-----|------------|------------|-----|-----|-----|-----|------------|------------|
| F23 | S15        | S14        | S13 | S12 | S11 | S10 | S09        | S08        |
| F24 | S23        | S22        | S21 | S20 | S19 | S18 | <b>S17</b> | S16        |
| F25 | S31        | S30        | S29 | S28 | S27 | S26 | S25        | S24        |
| F7  |            |            |     |     |     | SF  |            |            |

# 7.3 Tool Function (T Function)

### Tool function code signal T00 - T31 (F026 - F029) , tool function strobe signal TF (F007.3)

●Signal type: NC→PLC

•Signal function: After CNC executes T code, NC sends T code to PLC via F26 - F29, and then sets TF to 1 and transmits to PLC for logical control. For output conditions and executing progresses, please refer to related description. The relationship between T command and binary code signal is shown in the below table:

| F029, F028, F027, F026              | T command |
|-------------------------------------|-----------|
| 0000000, 0000000, 0000000, 00000000 | T00       |
| 0000000, 0000000, 0000000, 00000001 | T01       |
| 0000000, 0000000, 0000000, 00000010 | T02       |
| 0000000, 0000000, 0000000, 00000011 | Т03       |
| 0000000, 0000000, 0000000, 00000100 | T04       |
|                                     | -         |
|                                     |           |
|                                     |           |
|                                     |           |

| Signal add | resses: |     |     |     |     |     |     |     |     |
|------------|---------|-----|-----|-----|-----|-----|-----|-----|-----|
| F26        |         | Т07 | T06 | Т05 | T04 | Т03 | Т02 | T01 | Т00 |
| F27        |         | T15 | T14 | T13 | T12 | T11 | T10 | Т09 | T08 |
| F28        |         | T23 | T22 | T21 | T20 | T19 | T18 | T17 | T16 |
| F29        |         | T31 | T30 | T29 | T28 | T27 | T26 | T25 | T24 |
| F7         |         |     |     |     |     | TF  |     |     |     |

# 7.4 MST Function End

### 7.4.1 End Signal

#### FIN (G004.3)

~ .

•Signal type:  $PLC \rightarrow NC$ 

•Signal function: When auxiliary functions, spindle speed function and tool function are all finished executing, PLC sets FIN to 1 and transmits to NC.

| • | Signal add | ress: |  |     |  |  |
|---|------------|-------|--|-----|--|--|
|   | G4         |       |  | FIN |  |  |

### 7.4.2 Distribution End Signal

#### DEN (F001.3):

•Signal type:  $NC \rightarrow PLC$ 

•Signal function: If auxiliary functions, spindle speed function, tool function and other commands (e.g. move command, pause command) are all in a single block, after other commands are finished executing, waiting for FIN signal, then NC sets DEN to 1. Every time a block ends executing, DEN will be set to 0.

| Signal add | ress: |  |     |  |  |
|------------|-------|--|-----|--|--|
| <b>F1</b>  |       |  | DEN |  |  |

# 7.5 AUNCTION LOCK SIGNAL

### 7.5.1 Auxiliary Function Lock Signal

#### AFL (G0005.6):

- •Signal type:  $PLC \rightarrow NC$
- •Signal function: PLC sets G5.6 to 1, then transmits to NC to disenable the execution of M, S, T functions.
- Notes: When AFL signal is 1, CNC works as below:

- A: For operations with automatic method and inputting method, CNC doesn't execute specified M, S and T functions, i.e. code signal and strobe signal are not outputted.
- **B:** If AFL is set to 1 after code signal is outputted, CNC works in a normal way until execution finishes (until FIN signal is received and strobe signal is set to 0).
- C: When AFL is 1, M00, M01, M02 and M30 commands can be executed, and corresponding code signal, strobe signal, coding signal are all outputted in a normal way.
- D: If AFL is 1, auxiliary functions M98 and M99 still works in a normal way, but no results are outputted.
- E: If AFL is 1, spindle analog value can be outputted.

•Signal address:

| Signal add |  |     |  |  |  |
|------------|--|-----|--|--|--|
| G5         |  | AFL |  |  |  |
|            |  |     |  |  |  |

# 7.5.2 Detection Signal of Auxiliary Function Lock

### MAFL (F004.4):

●Signal type: NC→PLC

•Signal function: When CNC is executing auxiliary function lock, NC sets F4.4 to 1 and transmits to PLC.

#### •Signal address:

| F4 |  |  | MAFL |  |  |
|----|--|--|------|--|--|
|    |  |  |      |  |  |

# Chapter 8 SPINDLE SPEED

The spindle is divided into gear spindle and analog spindle according its control mode. CNC converts S code into switching value to output to spindle to control spindle speed in gear spindle mode; CNC converts S code into analog value to spindle to control spindle speed in analog spindle mode; CNC transmits SIMSPL signal to inform PLC of current spindle control mode.

#### Spindle mode signal SIMSPL (F200.4)

- Signal type:  $NC \rightarrow PLC$
- Signal function: NC sets SIMSPL to 0 or 1, sets control mode of spindle speed, transmits SIMSPL to PLC and informs PLC of current spindle speed control mode.
- Signal action: SIMSPL=1: CNC sets analog spindle control; S code is converted into analog value and is transmitted.
  - SIMSPL=0: CNC sets gear spindle control; S code is converted into switching value and is transmitted.

| <ul> <li>Signal address</li> </ul> |   |        |  |  |
|------------------------------------|---|--------|--|--|
| F200                               | 5 | SIMSPL |  |  |

# **8.1 GEAR SPINDLE**

Gear spindle is defined that the actual spindle speed is controlled by gears of machine, and CNC converts S code into switching value to control gears of machine to realize spindle speed control. Refer to *Section 7.2.* 

# **8.2 ANALOG SPINDLE**

#### 8.2.1 Analog Spindle Speed Control

S instruction for analog spindle control: it is input by part programs and used for specifying analog spindle speed controlled by CNC. For constant surface speed cutting (G96), CNC converts the specified constant surface speed into spindle speed.

S code/SF signal output: analog spindle control function in CNC outputs S instruction with binary code to PLC and does not output SF.

Gear shifting: although S instruction specifies spindle speed, actual control of CNC is spindle motor. CNC outputs the corresponding spindle speed when the machine gear shifts to some gear.

Gear shifting method: to execute gear shifting, max. spindle speed corresponding to each gear is set by NO.037~NO.040. Selection signal of gear shift is 2-bit code signal(GR1, GR2). Relationship between signal and gear is as follows:

# 黛广州数控

## GSK980TD Turning Machine CNC

| GR2(G28.2) | GR1(G28.1) | Gear | Parameter number of max. spindle speed |
|------------|------------|------|----------------------------------------|
| 0          | 0          | 1    | Data parameter NO.037                  |
| 0          | 1          | 2    | Data parameter NO.038                  |
| 1          | 0          | 3    | Data parameter NO.039                  |
| 1          | 1          | 4    | Data parameter NO.040                  |

NO.037 $\sim$ NO.040 separately set No. 1-No. 4 max. spindle speed. When analog voltage 10V corresponds to max. speed of spindle motor, linear relationship of analog voltage output for the same S instruction in different gears is as follows:



Suppose that NO.037=1000; NO.038=2000; NO.039=4000; NO.040=5000. S=800:

G28.1=0, G28.2=0, No. 1 gear:

$$U1 = \frac{800}{1000} \times 10 = 8V$$

G28.1=0, G28.2=0, No. 2 gear:

$$U2 = \frac{800}{2000} \times 10 = 4V$$

G28.1=0, G28.2=0, No. 3 gear:

$$U3 = \frac{800}{4000} \times 10 = 2V$$

G28.1=0, G28.2=0, No. 4 gear:

$$U4 = \frac{800}{5000} \times 10 = 1.6V$$

Formula operation of output voltage value:

$$U = \frac{S \text{ instruction}}{Max.speed \text{ of current gear}} X10$$

S12 code (R12O~R01O) output: NC counts the spindle speed of each gear through gear shifting control,

namely S12 code signal R12O~R01O (0~4095) output the spindle motor and PLC. Relationship between 10V and S12 code is as follows:



S12 code output: SIND (G33.7) determinates the spindle speed instruction uses S12 code data(R12O~R01O) counted by NC or S12 bit code signal (spindle motor speed instruction signal R12I~R01I) specified by PLC. The spindle speed instruction is set in R12I~R01I if the spindle speed is transmitted from PLC.

Voltage offset: after the system receives the spindle speed S12 bit code  $(0\sim4095)$ , it compensates and regulates instruction value of spindle speed by setting NO.021 (it is voltage compensation value when the analog voltage outputs 0V) and NO.036 (it is voltage compensation value when the analog voltage outputs 0V). Operation formula is as follows:

$$\text{Output value of spindle speed=} \frac{9999+\text{NO. 021}-\text{NO. 036}}{9999} \text{XS12 code+NO. 036X} \frac{4095}{9999}$$

Conditions of stop output: when S0 is commanded (\*SSTP=0 or S0), the instruction output to spindle is reset to 0. An instruction from NC to spindle cannot be reset to 0 with M05, emergent stop or reset mode.

Analog spindle interface: the system outputs analog voltage of the regulated spindle speed to the spindle motor by analog spindle interface circuit.

Control instruction flow of analog spindle speed



### Spindle stop signal \*SSTP (G29.6):

●Signal type: PLC→NC

• Signal function: stop output the spindle speed instruction. The signal sets S instruction in NC to be 0. Its relative time sequence is as follows:

• Caution: when the spindle stop signal **\*SSTP** is 0, the output voltage is 0V. When the signal is 1, the analog voltage outputs instruction value. When the signal is not used, the signal is set to 1 to make CNC control spindle speed.

•Signal address:



## Spindle speed override signal SOV0~SOV7 (G30)

•Signal type:  $PLC \rightarrow NC$ 

<sup>●</sup> Signal function: PLC evaluates G30 to transmit it to NC which will determine the spindle speed override according to G30 value. Relation between SOV0~SOV7 and override value is as follows:

| SOV7~SOV0 (G30.7~G30.0) | Spindle override |
|-------------------------|------------------|
| 0000,0111               | 50%              |
| 0000,0110               | 60%              |
| 0000,0010               | 70%              |
| 0000,0011               | 80%              |
| 0000,0001               | 90%              |
| 0000,0000               | 100%             |
| 0000,0100               | 110%             |
| 0000,0101               | 120%             |

•Caution: The spindle override function is value in tapping cycle and thread cutting.



G30

 SOV07
 SOV06
 SOV05
 SOV04
 SOV03
 SOV02
 SOV01
 SOV00





### Spindle enabling signal ENB (F001.4)

• Signal type:  $NC \rightarrow PLC$ 

• Signal function: it represents whether there is the spindle instruction.

●Caution: when an instruction sets the spindle speed(it is not zero) to output to the spindle, NC set F1.4 to 1; if it is 0, ENB signal is set to 0. In analog spindle mode, even if the input spindle instruction is 0(namely, analog voltage is 0V), the spindle motor rotates with low speed owing the voltage excursion of inverter. At this time, ENB signal is used for stopping spindle motor.

• Signal address:

|    | - |  |     |  |  |
|----|---|--|-----|--|--|
| F1 |   |  | ENB |  |  |
|    |   |  |     |  |  |

### Gear selection signal GR1,GR2 (G28.1, G28.2)

●Signal type: PLC→CNC

• Signal function: it informs CNC of current selected gear and its operations is referred to the above-mentioned.

•Signal address:

|     | _ |  |  |     |     |  |
|-----|---|--|--|-----|-----|--|
| G28 |   |  |  | GR2 | GR1 |  |
|     |   |  |  |     |     |  |

### S 12-bit code signal R01O~R12O (F036.0~F037.3)

•Signal type: NC  $\rightarrow$  PLC

• Signal function: it converts instruction value of spindle speed counted by NC spindle control function into  $0 \sim 4095$  and outputs to PLC.

•Signal address:

| F36 | R08O | R07O | R06O | R05O | R04O | R03O | R02O | R01O |
|-----|------|------|------|------|------|------|------|------|
| F37 |      |      |      |      | R12O | R110 | R100 | R09O |

## 8.2.2 spindle output control of PLC

PLC can be used for control spindle gear shifting as follows:

- 1: Set SIND to 1 to convert its control mode from NC to PLC.
- 2: Set the spindle motor speed data counted by PLC in PLC spindle control signal R011~R12I.

When the spindle motor speed is controlled by PLC, it is influenced by any signals (such as spindle override signal) which are related to CNC spindle speed instructions or parameter settings.

### Instruction selection signal of spindle motor speed SIND (G33.7)

•Signal type:  $PLC \rightarrow NC$ 

• Signal function: it is used for selecting CNC or PLC to control spindle motor speed.

SIND=1: control the spindle motor according to speed instruction (R01I $\sim$ R12I) transmitted by PLC

SIND=0: control the spindle motor according to speed instruction transmitted by PLC. The spindle speed is output by specified by S instruction.

| Signal address: |      |  |  |
|-----------------|------|--|--|
| G33             | SIND |  |  |

#### S 12-bit code input signal R01I~R12I (G32.0~G33.3)

•Signal type:  $PLC \rightarrow NC$ 

• Signal function: it is instruction value the spindle motor speed transmitted from PLC. It specifies the spindle motor speed in binary and its speed is  $0 \sim 4095$ .

• Signal address:

| G32 | R08I | R07I | R06I | R05I | R04I | R03I | R02I | R01I |
|-----|------|------|------|------|------|------|------|------|
| G33 |      |      |      |      | R12I | R11I | R10I | R09I |

### Instruction signal of spindle gear shifting SFTREV\_L, SFTREV\_H (F215, F216)

• Signal type:  $NC \rightarrow PLC$ 

• Signal function: the signal informs PLC of the spindle motor speed instruction in gear shifting and specifies the spindle motor speed in binary. Its speed is  $0 \sim 4095$ . Relation between the speed and 10V is as follows (F216,F215) =NO.067×4095/10000) :



| •Signal address: |          |
|------------------|----------|
| F215             | SFTREV_L |
| F216             | SFTREV_H |

### Valid signal of automatic gear shifting AGER (F208.7)

• Signal type: NC  $\rightarrow$  PLC

• Signal function: NC transmits AGER(F208.7) to PLC and PLC executes logical control based whether AGER(F208.7) is 1. When AGER(F208.7) is 1, the automatic gear shifting is valid and PLC executes the automatic gear shifting.

• Signal address:

| F208 | AGER                                        |          |                 |         |     |  |
|------|---------------------------------------------|----------|-----------------|---------|-----|--|
| 1.00 | <br>• • • • • • • • • • • • • • • • • • • • | ACINI (E | <b>200</b> () ! | <br>1.0 | • 1 |  |

#### Test gear shifting in-position signal AGIN (F208.6) in automatic gear shifting to 1, 2

•Signal type:  $NC \rightarrow PLC$ 

• Signal function: NC transmits AGIN (F208.6) to PLC. When AGIN (F208.6) is 1, the system automatically gear shifts to 1 or 2, and AGIN (F208.6) is 0, PLC does not test the gear shifting in-position signal.

| •Signal add | lress: |      |  |  |  |
|-------------|--------|------|--|--|--|
| F208        |        | AGIN |  |  |  |

# **8.3 SPINDLE JOG FUNCTION**

When the spindle jog function is valid, the spindle rotates at the speed set by NO.109 for some time set by NO.108 after it is started. The function is valid for analog spindle control and executed in JOG, Handwheel/Increment, Machine Reference Point Return and Program Reference Point Return mode.

## 8.3.1 Spindle Jog Signal

#### SPHD (G200.0)

• Signal type:  $PLC \rightarrow NC$ 

• Signal function: when the analog spindle function is valid, PLC sets G200.0 to 1 and transmits to 1 to specify that the spindle jog function is valid. G200.0 is 1 when the spindle rotates normally.

• Signal address:

| G200 |  |  |  |  | SPHD |
|------|--|--|--|--|------|
|      |  |  |  |  |      |

## 8.3.2 Spindle Jog Detection Signal

#### MSPHD (F199.0):

• Signal type: NC  $\rightarrow$  PLC

• Signal function: when CNC is executing the spindle jog, NC sets F199.0 to 1 and transmits to PLC to inform PLC that NC is executing the spindle jog; F199.0 is 0 when NC is not the spindle jog mode.

• Signal address:

| F199 |  |  |  |  | MSPHD |
|------|--|--|--|--|-------|
|      |  |  |  |  |       |

# 8.4 SPINDLE SPEED IN-POSITION SIGNAL

CNC can start the cutting feed when the spindle speed in-position SAR is input signal. Usually, when the spindle speed is the specified one, the cutting feed is started. At this time, sensor detects the spindle speed, and the detected one is transmitted to NC by PLC.

When PLC program is edited for spindle speed in-position, if instructions of spindle speed changing and cutting feed are transmitted simultaneously, CNC changes its state according to the spindle speed to confirm SAR signal to start cutting feed. To avoid the above-mentioned problem, CNC needs to delay SAR signal and delay time is set by NO.072 after S instruction and cutting feed are transmitted.

NO.175 BIT6 is set to 1 when SAR signal is used.

#### Spindle speed in-position signal SAR (G029.4):

• Signal type:  $PLC \rightarrow NC$ 

• Signal function: when PLC sets G29.4 to 1, it transmits to NC and informs NC that the cutting feed can be started. When G29.4 is 0, the cutting feed cannot be started.

• Caution: the signal is used for informing CNC that the spindle speed is in-position. And so the signal is set to 1 after the actual spindle speed is the specified one. CNC detects SAR signal in the following states:

- A: After CNC switches from rapid traverse movement mode to cutting feed, before the first feed block is distributed, and after CNC reads the feed block and runs a period of time set by NO.072, CNC starts to detect SAR.
- B: After S code is commanded and before the first feed block is distributed, its dwell time is the same as the above-mentioned A.
- C: When S code and the cutting feed are in the same block, and after S code is output, CNC dwell a period of time set by NO.072 and starts to detect SAR signal. If SAR signal is 1, CNC starts to cutting feed.

• Signal address:

|     |  |  |     | i. | i. |  |
|-----|--|--|-----|----|----|--|
| G29 |  |  | SAR |    |    |  |
|     |  |  |     |    |    |  |

# **8.5 RIGID TAPPING**

Rigid tapping is defined that the tapping axis and the spindle are executed synchronously in general tapping fixed cycle. CNC needs to test directional signal of spindle rotating in rigid tapping to ensure that the cutting feed direction and machining process are executed normally.

Execution process: spindle rotating  $\rightarrow$  tool infeed to tapping in Z direction  $\rightarrow$  transmit M05 to spindle  $\rightarrow$  wait for spindle complete stop  $\rightarrow$  transmit instruction for spindle counterclockwise rotation  $\rightarrow$  tool retraction to starting point in Z direction  $\rightarrow$  spindle stop. To execute the rigid tapping, the ladder must be edited to inform CNC of rotating direction of external spindle.

## SRVB (G74.4), SFRB (G74.5):

•Signal type:  $PLC \rightarrow NC$ 

● Signal function: PLC sets G74.4, G74.5 in rigid tapping, transmits to NC and inform it that the spindle rotates clockwise or counterclockwise to start cutting feed; when the spindle rotates clockwise, SRVB=1; when it rotates counterclockwise, SFRB=1; when it stops, SRVB, SFRB are set to 0.

• Caution: PLC must set SRVB, SFRB and informs CNC of current spindle rotating direction in rigid tapping.

| •Signal address: |  |      |      |  |  |
|------------------|--|------|------|--|--|
| G74              |  | SFRB | SRVB |  |  |
|                  |  |      |      |  |  |

# Chapter 9 TOOL FUNCTION

When the T code or HDT signal is specified, NC compares the required tool number with the current tool number NT00 $\sim$ NT31, and it does not execute the tool change if the tool numbers are not consistent with each other, which generates a code signal and general signal of the required tool number, and the machine selects tool according to the generated signal.

The tool change can be executed with T instruction in Auto/MDI/Manual mode and the sequential tool change is executed by HDT signal.

#### Current tool number NT00~NT31 (G201~G204)

- •Signal type:  $PLC \rightarrow NC$
- Signal function: After PLC has tested the current tool selection signal, it sets NT00~NT31 (G201~G204) to the corresponding value, transmits to NC and informs NC of current tool number. These signals are to represent tool numbers with binary code.

| ●Signal ad | ldress |      |      |      |      |      |      |      |      |
|------------|--------|------|------|------|------|------|------|------|------|
| G201       |        | NT07 | NT06 | NT05 | NT04 | NT03 | NT02 | NT01 | NT00 |
| G202       |        | NT15 | NT14 | NT13 | NT12 | NT11 | NT10 | NT09 | NT08 |
| G203       |        | NT23 | NT22 | NT21 | NT20 | NT19 | NT18 | NT17 | NT16 |
| G204       |        | NT31 | NT30 | NT29 | NT28 | NT27 | NT26 | NT25 | NT24 |

# 9.1 TOOL CHANGE with T INSTRUCTION

User can specify T instruction to tool change in Auto/MDI mode; NC transmits tool selection number and general signal specified by T instruction and then waits for PLC to execute tool change after it explains T instruction. Refer to *Chapter 7* about tool change.

# 9.2 MANUALLY SEQUENTIAL TOOL CHANGE

The current tool number adds 1 as the next tool to execute tool change in manual sequential tool change. If the current tool number adding 1 is more than the total tool selections set by NO.084, the required next tool number is 1.

Execution process of CNC manual sequential tool change is the same that of tool change with T instruction; NC transmits the tool selection number and general signal of the next tool and waits for PLC executing tool change. CNC transmits the tool number which the current one adds 1 in manual sequential tool change, but one is specified by T instruction in tool change with T instruction.

#### Manually sequential tool change HDT (G44.7):

- Signal type:  $PLC \rightarrow NC$
- •Signal function: PLC sets G44.7 to 1 and transmits to NC; NC will execute tool change sequentially according to current tool number.



# •Signal address:

G44

| HDT |  |  |  |  |  |  |
|-----|--|--|--|--|--|--|
|-----|--|--|--|--|--|--|

# Chapter 10 PROGRAMMING INSTRUCTION

In programming, although subprogram is useful for repetitively executing the same operations, macro program is useful for editing general program because it can use variable, arithmetical operation, logic operation and condition branch. A part program can call a user macro program like calling a subprogram as follows:



Some function programmed by macro program is usually used for module. Programs can be edited by data variable and can be compiled by macro program to form the machining technology.

# **10.1 INPUT SIGNALS of USER MACRO PROGRAM**

#### UI000~UI015 (G054, G055):

- •Signal type:  $PLC \rightarrow CNC$
- Signal function: They are used for CNC variable of user macro program read/write, and for interface signal between user macro program and PLC instead of offering any functions for control units. Their corresponding variables are as follows:

| G54             | <b>UI007</b> | <b>UI006</b> | UI005  | <b>UI004</b> | UI003   | <b>UI002</b> | <b>UI001</b> | <b>UI000</b> |
|-----------------|--------------|--------------|--------|--------------|---------|--------------|--------------|--------------|
| Variable        | #1007        | #1006        | #1005  | #1004        | #1003   | #1002        | #1001        | #1000        |
|                 |              |              |        |              |         |              |              |              |
| 055             | TITO1 -      | T TTO 1 4    | 111012 | 111013       | T 11011 |              | TITOOO       | TITOOO       |
| G55             | 01015        | 01014        | 01013  | 01012        | UIUII   | 01010        | U1009        | 01008        |
| G55<br>Variable | #1015        | #1014        | #1013  | #1012        | #1011   | #1010        | #1009        | #1008        |

#### Signal address:

| #1032 | BIT7         | BIT6         | BIT5  | BIT4         | BIT3         | BIT2         | BIT1         | BIT0         |
|-------|--------------|--------------|-------|--------------|--------------|--------------|--------------|--------------|
|       | <b>UI007</b> | <b>UI006</b> | UI005 | <b>UI004</b> | UI003        | UI002        | <b>UI001</b> | <b>UI000</b> |
|       | BIT15        | BIT14        | BIT13 | BIT12        | BIT11        | BIT10        | BIT9         | BIT8         |
|       | UI015        | <b>UI014</b> | UI013 | UI012        | <b>UI011</b> | <b>UI010</b> | <b>UI009</b> | <b>UI008</b> |
# **10.2 OUTPUT SIGNALS of USER MACRO PROGRAM**

#### UO000~UO015 (F054~F055), UO100~UO131 (F056~F059):

•Signal type:  $CNC \rightarrow PLC$ 

Signal function: They are used for CNC variable of user macro program read/write and for interface signal between user macro program and PLC instead of offering any functions for control units. Their corresponding variables are as follows:

|          | - |       |       |       |       |       |       |       |       |
|----------|---|-------|-------|-------|-------|-------|-------|-------|-------|
| F54      |   | UO007 | UO006 | UO005 | UO004 | UO003 | UO002 | UO001 | UO000 |
| Variable |   | #1107 | #1106 | #1105 | #1104 | #1103 | #1102 | #1101 | #1100 |
|          |   |       |       |       |       |       |       |       |       |
| F55      |   | UO015 | UO014 | UO013 | UO012 | UO011 | UO010 | UO009 | UO008 |
| Variable |   | #1115 | #1114 | #1113 | #1112 | #1111 | #1110 | #1109 | #1108 |
|          |   |       |       |       |       |       |       |       |       |
| F56      |   | UO107 | UO106 | UO105 | UO104 | UO103 | UO102 | UO101 | UO100 |
|          |   |       |       |       |       |       |       |       |       |
| F57      |   | UO115 | UO114 | UO113 | UO112 | UO111 | UO110 | UO109 | UO108 |
|          |   |       |       |       |       |       |       |       |       |
| F58      |   | UO123 | UO122 | UO121 | UO120 | UO119 | UO118 | UO117 | UO116 |
|          |   |       |       |       |       |       |       |       |       |
| F59      |   | UO131 | UO130 | UO129 | UO128 | UO127 | UO126 | UO125 | UO124 |
|          |   |       |       |       |       |       |       |       |       |

• Signal address:

| #1132 | BIT7  | BIT6  | BIT5  | BIT4  | BIT3  | BIT2  | BIT1  | BIT0  |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|       | UO007 | UO006 | UO005 | UO004 | UO003 | UO002 | UO001 | UO000 |
|       | BIT15 | BIT14 | BIT13 | BIT12 | BIT11 | BIT10 | BIT9  | BIT8  |
|       | UO015 | UO014 | UO013 | UO012 | UO011 | UO010 | UO009 | UO008 |
|       |       |       |       |       |       |       |       |       |
|       | BIT7  | BIT6  | BIT5  | BIT4  | BIT3  | BIT2  | BIT1  | BIT0  |
|       | UO107 | UO106 | UO105 | UO104 | UO103 | UO102 | UO101 | UO100 |
| #1133 | BIT15 | BIT14 | BIT13 | BIT12 | BIT11 | BIT10 | BIT9  | BIT8  |
|       | UO115 | UO114 | UO113 | UO112 | UO111 | UO110 | UO109 | UO108 |
|       | BIT23 | BIT22 | BIT21 | BIT20 | BIT19 | BIT18 | BIT17 | BIT16 |
|       | UO123 | UO122 | UO121 | UO120 | UO119 | UO118 | UO117 | UO116 |
|       | BIT31 | BIT30 | BIT29 | BIT28 | BIT27 | BIT26 | BIT25 | BIT24 |
|       | UO131 | UO130 | UO129 | UO128 | UO127 | UO126 | UO125 | UO124 |

# Chapter 11 DISPLAY/SET/EDIT

# **11.1 SOFT OPERATOR PANEL**

Soft operator panel function is to replace some control switches on the machine operator panel with soft switches. Connect or disconnect with soft switches by using keys on MDI panel.

CNC informs PLC that states of all soft switches are indicated by their output signals. For example, soft switch SBKO is set to 1, and CNC is not in Single Block mode. Only when PLC set SBK to 1, CNC can select Single Block mode.

Auxiliary function locked soft key AFLO (F75.1) Program jump soft key BDTO (F75.2) Single Block soft key SBKO (F75.3) Machine locked soft key MLKO (F75.4) Dry run soft key DRNO (F75.5) OUTO soft key (F197.1)

•Signal type:  $NC \rightarrow PLC$ 

• Signal function: NC sets the above-mentioned F signals, and transmits them to PLC; PLC sets the corresponding F signals and then transmits them to NC to select their corresponding functions.

| ● Signal | address: |
|----------|----------|
|----------|----------|

| F75  |  | DRNO | MLKO | SBKO | BDTO | AFLO |  |
|------|--|------|------|------|------|------|--|
| F197 |  |      |      |      |      | OUTO |  |

Auxiliary function signal AFL (G5.6)

Program jump signal BDT (G44.0)

Single Block signal SBK (G46.1)

Machine locked signal MLK (G44.1)

Dry run signal DRN (G46.7)

• Signal type:  $PLC \rightarrow NC$ 

• Signal function: PLC sets the above-mentioned G signals, and transmits to NC which will define their corresponding functions.

• Signal address

| G5          |     | AFL |  |  |     |     |
|-------------|-----|-----|--|--|-----|-----|
| G44         |     |     |  |  | MLK | BDT |
| <b>G</b> 46 | DRN |     |  |  | SBK |     |

# **11.2 MEMORY PROTECTION KEY**

The memory protection key is used for protecting part programs, offset values, and parameters from being modified by mistake.

Memory protection signal KEY1 (G46.3)

**Book 2 Function** 

# 黛广州数控

- •Signal type:  $PLC \rightarrow NC$
- Signal function: Set whether memory content can be modified.

KEY1=1: inputs of programs, offset values and parameters are valid;

KEY1=0: inputs of programs, offset values and parameters are invalid.

•Signal address

|  | G46 |  |  |  |  |  | KEY1 |  |  |  |
|--|-----|--|--|--|--|--|------|--|--|--|
|--|-----|--|--|--|--|--|------|--|--|--|

# Chapter 12 FUNCTION PARAMETER SIGNAL

The function parameter signals are defined that CNC converts function parameters related to PLC to F signals to output it. PLC optionally executes a concrete function set by CNC parameter according to these function parameter signals.

#### **12.1 PARAMETER SIGNALS RELATED to SPINDLE**

CNC informs PLC of signals related to spindle, including spindle control mode, automatic gear shifting, rotation enabling test.

#### 12.1.1 Spindle Control Mode Signal

#### SIMSPL (F200.4):

• Signal type: NC  $\rightarrow$  PLC, refer to *Chapter 8* in the book

#### 12.1.2 Spindle Rotation Enabling Signal

#### SPEN (F208.3):

- Signal type: NC  $\rightarrow$  PLC
- Signal function: set whether the spindle rotation enabling signal test is valid.
  - SPEN=0: the spindle rotation enabling signal test is invalid.
    - SPEN=1:and AGIN (F208.6) =0: the detection for spindle rotation enabling signal is valid.

| • Signal addies |
|-----------------|
|-----------------|

| υ    |  |  |      |  |  |
|------|--|--|------|--|--|
| F208 |  |  | SPEN |  |  |
|      |  |  |      |  |  |

#### 12.1.3 Automatic Gear Shifting Function Signal

#### AGER (F208.7):

• Signal type: NC  $\rightarrow$  PLC, refer to 8.2.2

#### 12.1.4 Checking Gear Shifting In-position Signal When Automatic Shifting to Gear 1 or 2

#### AGIN (F208.6)

• Signal type: NC  $\rightarrow$  PLC, refer to 8.2.2

#### 12.1.5 Gear Shifting In-position Signal/Level Selection of Spindle Enabling Signal

#### AGIM (F208.5):

• Signal type: NC  $\rightarrow$  PLC

| ⊈厅℠州数排               | 空            |               |              |             | GSK98        | 0TD Tu     | rning M     | Iachine CN      |
|----------------------|--------------|---------------|--------------|-------------|--------------|------------|-------------|-----------------|
| •Signal function:    | It informs F | LC of valid   | levels of g  | ear shiftin | g in-positic | on signal  | and spind   | le enabling     |
|                      | signal.      |               |              |             |              |            |             |                 |
|                      | AGIM=0       | high level    | of spindle   | gear shift  | ting in-posi | ition sigr | al is vali  | d; low level of |
|                      |              | enabling sig  | gnal is vali | d;          |              |            |             |                 |
|                      | AGIM=1:      | low level     | of spindle   | gear shift  | ing in-posi  | tion sign  | al is valid | l; high level o |
|                      |              | enabling si   | ignal is val | lid.        |              |            |             |                 |
| •Signal address:     |              |               |              |             |              |            |             |                 |
| F208                 |              |               | AGIM         |             |              |            |             |                 |
|                      | -            |               |              | <u>.</u>    | <u>.</u>     |            | ·           |                 |
| 12.1.6 Selection Sig | nal of FS1   | ~S4 Outr      | out          |             |              |            |             |                 |
| 0                    |              |               |              |             |              |            |             |                 |
| SUOS (F211.0):       |              |               |              |             |              |            |             |                 |
| •Signal type: NC     | →PLC         |               |              |             |              |            |             |                 |
| •Signal function:    | it informs P | LC of S1~     | S4 output s  | selection w | hen the sys  | stem is in | spindle g   | ear shifting    |
| C                    | mode.        |               | 1            |             | •            |            | 1 0         | C               |
| SUOS=0: S1~          | -S4 output i | s valid in ge | ar shifting  | spindle m   | ode;         |            |             |                 |

SUOS=1: S1, S2 output is valid and S3, S4 output is invalid in spindle gear shifting mode.

| Signal address: |  |
|-----------------|--|
|-----------------|--|

| 1 | Bighai ad | ure555. |  |  |  |      |
|---|-----------|---------|--|--|--|------|
|   | F211      |         |  |  |  | SUOS |
|   |           |         |  |  |  |      |

# **12.2 PARAMETER SIGNALS for REFERENCE POINT RETURN**

These parameter signals determine whether a valid level of deceleration signal and the reference point return keys are self-hold when CNC executes machine reference point return and program reference point return.

#### 12.2.1 Selection Signal of Valid Level of Deceleration Signal

#### DECI (F201.5):

- Signal type: NC  $\rightarrow$  PLC
- Signal function: the signal informs PLC of valid level of current deceleration signal.

DECI=0: low level of deceleration signal is valid;

DECI=1: high level of deceleration signal is valid.

```
• Signal address:
```

| F201 |  | DECI |  |  |   |
|------|--|------|--|--|---|
|      |  |      |  |  | - |

#### 12.2.2 Self-hold Signal of Motion Key in Reference Point Return

#### ZNIK (F205.2)

• Signal type: NC  $\rightarrow$  PLC

• Signal function: The signal informs whether the motion key is self-hold when the machine reference point return or the program reference point is executed.

ZNIK=0: the motion key is not self-hold when the reference point return is executed;

ZNIK=1: t he motion key is self-hold until the reference point return is executed completely.

| •Signal address: |      |  |  |  |  |  |  |      |  |  |
|------------------|------|--|--|--|--|--|--|------|--|--|
|                  | F205 |  |  |  |  |  |  | ZNIK |  |  |

# **12.3 PARAMETER SIGNALS RELATED to TOOL**

CNC inform PLC of signals related to tool control function, including total tool selections, valid level of tool selection, valid level of toolpost clamping.

#### 12.3.1 Total Tool Selection Signal

#### TMAX (F207)

| nal functio  | n: the signa | al informs | PLC of       | total tool s   | selection  | s on the t | oolpost. T | he tool se | lectior |
|--------------|--------------|------------|--------------|----------------|------------|------------|------------|------------|---------|
| sented with  | binary code. | For examp  | ole, the tot | tal tool selec | ction is 4 | , TMAX: (  | 00000100.  |            |         |
| gnal address | :            |            |              |                |            |            |            |            |         |
| 207          |              |            |              |                |            |            |            |            |         |
|              |              |            |              |                |            |            |            |            |         |
|              |              |            |              |                |            |            |            |            |         |

#### 12.3.2 Level Selection Signal for Tool Selection Signal

#### **TSGN (F205.1)**

• Signal type: NC  $\rightarrow$  PLC

• Signal function: the signal informs PLC of the valid level of current tool selection signal.

TSGN=0: high level of tool selection signal is valid;

TSGN=1: low level of tool selection signal is valid;

| •S | Signal address: |  |  |  |  |  |  |  |      |  |  |  |  |
|----|-----------------|--|--|--|--|--|--|--|------|--|--|--|--|
| ]  | F205            |  |  |  |  |  |  |  | TSGN |  |  |  |  |

#### 12.3.3 Level Selection Signal of Toolpost Clamping

#### TCPS (F205.0):

- Signal type:  $NC \rightarrow PLC$
- Signal function: the signal informs PLC of the valid level of current tool selection signal.
  - TSGN=0: low level of toolpost clamping signal is valid or the system does not test the toolpost clamping signal;

TSGN=1: high level of toolpost clamping signal is valid.

• Signal address:

| F205 |  |  |  | TCPS |
|------|--|--|--|------|
|      |  |  |  |      |

#### 12.3.4 Selection Signal of Tool Change Mode

#### **PB5 (F223.0):**

• Signal type: NC  $\rightarrow$  PLC

• Signal function: it informs PLC that CNC selects tool change mode A or B (refer to GSK980TD Turning Machine CNC-Connection)



PB5=1: select tool change mode A

PB5=0: select tool change mode B

| Signal address: |  |  |  |     |
|-----------------|--|--|--|-----|
| F223            |  |  |  | PB5 |

#### 12.3.5 Selection Signal of In-position Test

#### PB6 (F223.2):

- Signal type: NC  $\rightarrow$  PLC
- Signal function: the signal informs PLC whether CNC tests the tool selection signal after the tool change is completed.
  - PB6=1: test the tool selection signal;
  - PB6=0: do not test the tool selection signal.

• Signal address:



# **12.4 PARAMETER SIGNAL RELATED to CHUCK FUNCTION**

CNC inform PLC of signals related to the chuck control function, including valid signal of chuck function, internal/external chuck, chuck in-position test and valid level of chuck in-position signal and so on.

#### 12.4.1 Valid Signal of Chuck Function

#### SLQP (F208.0):

- Signal type: NC  $\rightarrow$  PLC
- Signal function: it informs PLC whether the current chuck function is valid.

SLQP=0: the chuck function is invalid;

SLQP=1: the chuck function is valid.

• Signal address:

| <u> </u> | 1 | 1 | 1 | 1 |  |      |
|----------|---|---|---|---|--|------|
| F208     |   |   |   |   |  | SLQP |
|          | - |   |   |   |  |      |

#### 12.4.2 Valid Signal of Chuck Clamping Test Function

#### SLSP (F208.1):

• Signal type: NC  $\rightarrow$  PLC

• Signal function: it informs PLC whether the chuck clamping signal is tested.

SLSP=0: test whether the chuck is clamping, otherwise the spindle cannot be started;

SLSP=1: do not test whether the chuck is clamping.

•Signal address:

| I | F208 |  |  |  | SLSP |  |
|---|------|--|--|--|------|--|
|   |      |  |  |  |      |  |

#### 12.4.3 Selection Signal of Chuck Mode

#### PB1 (F209.0)

- Signal type: NC  $\rightarrow$  PLC
- Signal function: it informs PLC that the current machine is in the internal chuck mode or the external chuck

mode.

PB1=0: internal chuck mode;

PB1=1: external chuck mode.

| •Signal ad | dress: |  |  |  |     |
|------------|--------|--|--|--|-----|
| F209       |        |  |  |  | PB1 |

#### 12.4.4 Valid Signal of Chuck In-position Signal Test Function

#### PB2 (F209.2)

- •Signal type: NC  $\rightarrow$  PLC
- Signal function: it informs PLC whether the chuck in-position signal is tested.

PB2=0: do not test the chuck in-position signal;

PB2=1: test the chuck in-position signal.

| <ul> <li>Signal address</li> </ul> |  |  |     |  |
|------------------------------------|--|--|-----|--|
| F209                               |  |  | PB2 |  |

# **12.5 PARAMETER SIGNALS of PRESSURE LOW TEST FUNCTION**

CNC informs PLC of signals related to pressure low test function, including valid signal of pressure low test function, valid level selection signal of pressure low input signal.

#### 12.5.1 Valid Signal of Pressure Low Test Function

#### PB3 (F209.4):

• Signal type: NC  $\rightarrow$  PLC

• Signal function: it informs PLC whether the current pressure low test function is valid.

PB3=0: the pressure low test function is invalid;

PB3=1: the pressure low test function is valid

| Signal address |  |  |  |  |     |  |  |  |  |  |  |
|----------------|--|--|--|--|-----|--|--|--|--|--|--|
| F209           |  |  |  |  | PB3 |  |  |  |  |  |  |

#### 12.5.2 Valid Level Selection Signal of Pressure Low Input Signal

#### SPB3 (F209.5):

- •Signal type: NC  $\rightarrow$  PLC
- Signal function: it informs PLC of valid level of current pressure low.

SPB3=0: CNC alarms when the high level of pressure low input signal is valid;

SPB3=1: CNC alarms when the low level of pressure low input signal is valid.

| Signal address: |  |  |  |      |  |  |  |  |  |  |  |  |
|-----------------|--|--|--|------|--|--|--|--|--|--|--|--|
| F209            |  |  |  | SPB3 |  |  |  |  |  |  |  |  |

# **12.6 PARAMETER SIGNALS of SAFEGUARD TEST FUNCTION**

CNC inform PLC of signals related to safeguard test function, including valid signal of safeguard test function, selection signal of valid level of safeguard input signal.

#### 12.6.1 Valid Signal of Safeguard Test Function

#### PB4 (F209.6)

• Signal type: NC  $\rightarrow$  PLC

Cianal address

• Signal function: it informs PLC whether the current safeguard test function is valid.

PB4=0: the safeguard test function is invalid;

PB4=1: the safeguard test function is valid.

| Signal ad | luiess: |     |  |  |  |
|-----------|---------|-----|--|--|--|
| F209      |         | PB4 |  |  |  |
|           |         |     |  |  |  |

#### 12.6.2 Selection Signal of Valid Level of Safeguard Input Signal

#### SPB4 (F209.7)

- Signal type: NC  $\rightarrow$  PLC
- Signal function: it informs PLC of the valid level of current safeguard input signal.

SPB4=0: the safeguard is closed in low level;

SPB4=1: the safeguard is closed in high level.

| Signal | ad | dress |
|--------|----|-------|
| F209   | )  |       |

| SPB4 |  |  |  |   |
|------|--|--|--|---|
|      |  |  |  | , |

# **12.7 PARAMETER SINGALS of SHIELDING EXTERNAL SIGNALS**

These signals inform PLC whether CNC shields some external input signals. Shielded external input signals include an external emergent stop, an external cycle startup, an external pause, an external override signal and so on.

#### 12.7.1 Shielding External Feedrate Override Input Signal

#### SOVI (F210.0):

- Signal type: NC  $\rightarrow$  PLC
- Signal function: it informs PLC whether the external feedrate override signal is shielded.

SOVI=0: the external feedrate override signal is valid;

MES=1: the external feedrate override signal is shielded.

| Signal address: |  |  |  |      |
|-----------------|--|--|--|------|
| F210            |  |  |  | SOVI |

#### 12.7.2 Shielding External Emergent Stop Signal

**MESP (F210.3):** XII-6

• Signal type: NC  $\rightarrow$  PLC

• Signal function: it informs PLC whether the external emergent stop signal is shielded.

MESP=0: the external emergent stop signal is valid;

MESP=1: the external emergent stop signal is shielded.

| •Signal add | ress: |  |      |  |  |
|-------------|-------|--|------|--|--|
| F210        |       |  | MESP |  |  |

#### 12.7.3 Shielding External Pause Signal

#### MSP (F210.5):

• Signal type: NC  $\rightarrow$  PLC

• Signal function: it informs PLC whether the external pause signal is shielded.

MST=0: the external pause signal is valid;

MST=1: the external pause signal is shielded.

| <ul> <li>Signal ad</li> </ul> | dress: |  |     |  |  |  |
|-------------------------------|--------|--|-----|--|--|--|
| F210                          |        |  | MSP |  |  |  |

#### 12.7.4 Shielding External Cycle Startup Signal

#### MST (F210.6):

- •Signal type: NC  $\rightarrow$  PLC
- Signal function: it informs PLC whether the external cycle startup signal is shielded.

MST=0: the external cycle startup input signal is valid;

MST=1: the external cycle startup input signal is shielded.

| • Signal address: |     |  |  |  |  |  |  |  |  |
|-------------------|-----|--|--|--|--|--|--|--|--|
| F210              | MST |  |  |  |  |  |  |  |  |

# **12.8 PARAMETER SIGNAL for KEYS on OPERATOR PANEL**

These signals inform PLC that CNC defines complex usages of keys on the operator panel and usages of special definitions. Such as complex usage of OUT key and lubrication key, reset key of output interface, direction selection of motion key.

#### 12.8.1 Signal of OUT Key Startup Programs

#### DCS (F201.2):

- Signal type: NC  $\rightarrow$  PLC
- Signal function: it informs PLC whether pressing OUT key starts programs in MDI mode.

DCS=0: pressing OUT key cannot start programs;

DCS=1: pressing OUT key can start programs.



#### 12.8.2 Complex Signal of Lubrication/Spindle Jog Key

#### RHDO (F214.7):

- Signal type: NC  $\rightarrow$  PLC
- Signal function: it informs PLC of functions of lubrication/jog key on the operator panel.

RHDO=0: Lubrication/Jog key as Lubrication key;

RHDO=1: Lubrication/Jog key as JOG key.



#### 12.8.3 Selection Signal of Reset Key for Output Interface

# RSJG (F204.3):

• Signal type: NC  $\rightarrow$  PLC

• Signal function: it informs whether PLC resets M03, M04, M32, M08 when the reset key is pressed.

RSJG=0: PLC automatically closes M03, M04, M32, M08 output signal when the reset key is pressed;

RSJG=1: M03, M04, M32, M08 output signals are reserved when the reset key is pressed.

RSJG

| Signal ad | ldress: |  |  |
|-----------|---------|--|--|
| F204      |         |  |  |

#### 12.8.4 Direction Selection Signal for Motion Key in X Direction

#### XVAL (F214.0):

- Signal type: NC  $\rightarrow$  PLC
- Signal function: it defines the relationship between motion key in X direction and X-axis positive/negative direction.
  - XVAL=0: up motion key in X direction corresponds to X-axis negative direction, down motion key in Z direction corresponds to Z-axis positive direction;
  - XVAL=1: up motion key in X direction corresponds to X-axis positive direction, down motion key in Z direction corresponds to Z-axis negative direction.

• Signal address: F214 XVAL

#### 12.8.5 Direction Selection Signal for Motion Key in Z Direction

#### ZVAL (F214.1):

- Signal type: NC  $\rightarrow$  PLC
- Signal function: it defines the relationship between motion key in Z direction and Z-axis positive/negative direction.
  - ZVAL=0: left motion key in Z direction corresponds to Z-axis negative direction, right motion key in Z direction corresponds to Z-axis positive direction;
  - ZVAL=1: left motion key in Z direction corresponds to Z-axis positive direction, left motion key in Z direction corresponds to Z-axis negative direction.

| • Signal address: |  |  |  |      |  |
|-------------------|--|--|--|------|--|
| F214              |  |  |  | ZVAL |  |

#### 12.8.6 Handwheel/Step 0.1mm Selection Signal

#### SINC (F211.1):

- •Signal type: NC  $\rightarrow$  PLC
- Signal function: it selects whether 0.1mm increment is valid in Handwheel/Step mode.

SINC =0: 0.1mm increment is valid in Handwheel/Step mode.

SINC =1: 0.1mm increment is invalid in Handwheel/Step mode.

| •Signal address: |  |
|------------------|--|
|------------------|--|

| F211 |   |  |  |  | SINC |  |
|------|---|--|--|--|------|--|
|      | - |  |  |  |      |  |

## **12.9 PARAMETER SIGNALS RELATED to TAILSTOCK FUNCTION**

CNC informs PLC of signals related to tailstock control function.

#### Valid signal of tailstock function SLTW (F208.2)

- Signal type: NC  $\rightarrow$  PLC
- Signal function: it informs PLC whether the tailstock function is valid.

SLTW=0: tailstock function is invalid;

SLTW=1: tailstock function is valid;

• Signal address:

| -    |     |
|------|-----|
| F208 | ] [ |

|  | SLTW |  |
|--|------|--|
|  |      |  |

# BOOK 3

# **CNC CONFIGURATION SOFTWARE**

| Chapter 1 OVERVIEW                                    | I -1  |
|-------------------------------------------------------|-------|
| 1.1 GSKCC SOFTWARE                                    | I -1  |
| 1.2 DEFINITION of PROJECT                             | I -1  |
| Chapter 2 MENU COMMANDS                               | II -1 |
| 2.1 GENERAL INTERFACE                                 | II -1 |
| 2.2 MAIN MENU COMMAND                                 | II -2 |
| 2.2.1 [File] Menu                                     | II -2 |
| 2.2.2 [Edit] Menu                                     | II -4 |
| 2.2.3 [View] Menu                                     | II -8 |
| 2.2.4 [PLC] Menu                                      | II -8 |
| 2.2.5 [Tool]Menu                                      | II -9 |
| Chapter 3 PLC BASIC INSTRUCTIONS                      | III-1 |
| 3.1 LD, LDI, OUT INSTRUCTION                          | III-1 |
| 3.2 AND, ANI INSTRUCTION                              | III-2 |
| 3.3 OR, ORI INSTRUCTION                               | III-2 |
| 3.4 ORB INSTRUCTION                                   | III-3 |
| 3.5 ANB INSTRUCTION                                   | III-3 |
| Chapter 4 PLC FUNCTION INSTRUCTIONS                   | IV-1  |
| 4.1 END1 (END of GRADE ONE PROGRAM)                   | IV-1  |
| 4.2 END2 (END of GRADE TWO PROGRAM)                   | IV-1  |
| 4.3 SET                                               | IV-2  |
| 4.4 RST(RESET)                                        | IV-2  |
| 4.5 CMP (BINARY COMPARATIVE SET)                      | IV-3  |
| 4.6 TMRB (TIMER)                                      | IV-4  |
| 4.7 CTRC (BINARY COUNTER)                             | IV-5  |
| 4.8 MOVN (BINARY DATA COPY)                           | IV-6  |
| 4.9 DECB (BINARY ENCODING)                            | IV-7  |
| 4.10 CODB (BINARY CODE CONVERSION)                    | IV-7  |
| 4.11 JMPB (PROGRAM JUMPING)                           | IV-9  |
| 4.12 LBL (PROGRAM JUMPING LABEL)                      | IV-9  |
| 4.13 CALL (SUBPROGRAM CALLING)                        | IV-10 |
| 4.14 SP(START of SUBPROGRAM), SPE(END of SUBPROGRAM). | IV-10 |
| 4.15 ROTB (BINARY ROTATION CONTROL)                   | IV-11 |
| 4.16 PARI (PARITY CHECK)                              | IV-13 |
| 4.17 ADDB (BINARY DATA ADDING)                        | IV-14 |
| 4.18 SUBB (BINARY DATA SUBTRACTING)                   | IV-15 |
| 4.19 DIFU (ASCENDING EDGE SET)                        | IV-16 |
| 4.20 DIFD (DESCENDING EDGE SET)                       | IV-16 |
| 4.21 MOVE (AND)                                       | IV-17 |
| 4.22 ALT (ALTERNATIVE OUTPUT)                         | IV-18 |
| Chapter 5 COMMUNICATION                               |       |
| 5.1 TRANSMIT FILES to CNC                             |       |
| 5.2 UPLOAD FILES from CNC                             | V-3   |
| 5.3 DISCONNECT with CNC                               | V -4  |

# **Chapter 1 OVERVIEW**

#### **1.1 GSKCC SOFTWARE**

With a brief software interface, GSKCC is a configuration software of GSK-980TD, used for editing PLC ladder and part programs, setting CNC parameters, tool offset, pitch compensation.

GSKCC runs in WINDOWS98/2000/XP, editing PLC ladder, setting parameters relative to CNC, saving them, and printing PLC program by printer. Its characteristics are as follows:

- · Edit component comment, block comment in ladder to contribute to easy reading programs for user
- · Instruction system supports subprograms and program jumping contributed to flexible programming
- · Software with user environment menus and access keys is easy to operate
- Download current engineering to CNC or transmit related configuration files from CNC by serial communication interface

Refer to *Programming of GSK980TD Turning Machine CNC PLC User Manual* about CNC PLC ladder program rules and component settings, detailing operations and usages of GSKCC software (V1.1-Bulid050901).

System requirements:

- Operating system: Windows98/2000/XP
- CPU: Pentium 133MHz or more
- Hard disk: over 10M
- Memory: over 32M
- Display: resolution 1024\*768, 16 colors
- · Keyboard, mouse
- Serial communication interface

#### **1.2 DEFINITION of PROJECT**

Project is defined to be an integrated file used for managing PLC, CNC configuration and part programs. PLC includes data setting list, displaying information list, ladder programs and program version information. CNC configuration includes parameters, tool offset and pitch error compensation.

# Chapter 2 MENU COMMANDS

# 2.1 GENERAL INTERFACE





Main menu
All software operating commands
Main toolbar
Normal operating commands
Ladder editing toolbar
Operating commands for editing ladder
Workspace window
Manage all configurations of project
Message table
Output compile message of adder and search content message
User editing area
User can select all types of view to execute many operations, including editing ladder and setting parameters

# 2.2 MAIN MENU COMMAND

#### 2.2.1 [File] Menu

| File | Edit                   | View     | PLC    | Tool   | Windows | Help |
|------|------------------------|----------|--------|--------|---------|------|
| N    | lew Proj               | ject     |        |        | Ctr     | l+N  |
| 0    | )pen Pro               | oject    |        |        | Ctr     | 1+0  |
| C    | lose Pro               | oject    |        |        |         |      |
| S    | ave Pro                | ject     |        |        | Ctr     | l+S  |
| S    | iave As.               |          |        |        |         |      |
| Ir   | Import Lad File[*.ldx] |          |        |        |         |      |
| 1    |                        |          |        |        |         |      |
| P    | rint                   |          |        |        | Ctr     | I+P  |
| P    | rint Prev              | view     |        |        |         |      |
| P    | rint Setu              | ир       |        |        |         |      |
| 1    | 1 1.gpr                |          |        |        |         |      |
| 2    | 2.gpr                  |          |        |        |         |      |
| 3    | D:\cesh                | ni\beife | en2\2\ | 2.gpr  |         |      |
| 4    | D:\cesh                | ni\\q    | uanbu  | ı\quan | bu.gpr  |      |
| F    | - Cile                 |          |        |        |         |      |

Fig. 2-2

#### • [New Project ]

Create a new project by pressing access key [Ctrl+N] or mouse selecting  $\square$  in the main toolbar. After executing the new project command, dialog box is displayed as follows:

| Create a New Project | ×      |
|----------------------|--------|
| Project              | OK     |
| 980TD_C              | CANCEL |
|                      | Browse |
|                      |        |

Fig. 2-3

Input one project name in the first editing box and its path to memory in the second one, or select a button to browse files at the right side, and there is a dialog box as follows, then, select one file to confirm it, and there is the selected path to memory in the second editing box:

| 🖃 🚮 Desktop                |   |
|----------------------------|---|
| 🔄 🔄 My Documents           |   |
| 🖃 🖳 My Computer            |   |
| 🔁 🚍 Local Disk (C:)        |   |
| 🕀 💼 ACAD2000               |   |
| 🕀 💼 Documents and Settings |   |
| 🕀 💼 Inetpub                |   |
| 🖻 💼 lenovo_driver          |   |
| 庄 💼 LX_CHIP                |   |
| 🕀 🧰 🛄 LX_NET               |   |
| 🕀 💼 LX_SOUND               |   |
| ⊞ 🛅 LX_VGA                 |   |
| 🕀 🙃 Program Files          | • |



• [Open Project] Open a project stored in hardware by access key [Ctrl+O] or mouse selecting in the main toolbar. After executing the open project command, there is a dialog box to open project is displayed, and then you select the project \*.gpr and press [Open] to open it.

| Open project                                        | <u>?</u> × |
|-----------------------------------------------------|------------|
| Look in: 🔄 quanbu 💽 🗢 🗈 💣 🏢•                        |            |
| al quanbu.gpr                                       |            |
| Type: GPR File<br>Size: 10.4 KB                     |            |
| File name: quanbu Ope                               | 1          |
| Files of type:     Configuring project file (*.gpr) | el //      |



- [Close project] : Close the current open project.
- [Save Project] : Save the current open project by access key or pressing
- [Save As]: The current is saved as ones which is to open. After executing the command, pop-up a dialog similar to

that of [New project], set its name and path to save.

#### • [Import Lad File[\*.ldx]]:

Import ladder file\*.ldx to project.

Execute the command and a dialog is displayed as follows:

| Importing ladder program(*.ldx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | × |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Saving Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 |
| Importing to a new processing to a new proc |   |
| C Importing to the current project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| File path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ] |
| Browse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
| OK CANCEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |

Saving project: select [importing to a new project]

File path: press [Browse] and a dialog box to select files is displayed.

Press [OK] and import ladder project after selecting the saving project and file path.

- [Print] : Execute the command to print the ladder when the ladder editing view is current activation one.
- [Print Preview]: Firstly preview the file on screen not to print.
- [Last File List] :

| Print                     | Ctrl+P |
|---------------------------|--------|
| Print Preview             |        |
| Print Setup               |        |
| 1 wanmei.gpr              |        |
| 2 D:\ceshi\beifen2\2\2.gp | r      |
| 3 1.gpr                   |        |
| 4 2.gpr                   |        |



Menu [Print Setup] lists files in which there are last 4 open files, directly press one of them to open it.

• [Exit]: Exit from the current application program. When the current file is not save, the program indicates if the

current file is saved before exiting.

#### 2.2.2 [Edit] Menu



- [Cut] : Delete the selection contents to copy to clipboard by pressing access key [Ctrl+X] or 👗 in main toolbar.
- [Copy]: Copy the selected contents to clipboard by pressing access key [Ctrl+C] or 🗈 in main toolbar.
- [Paste]: Paste the contents in clipboard to the selected position by pressing access key [Ctrl+C] or 🛱 in main toolbar.
- [Delete]: Delete the selected content by access key[Delete].
- [Insert]: Pop-up three operating commands and insert the corresponding in the selected position.

| File [ | Edit View | PLC Tool | Windows  | Help |
|--------|-----------|----------|----------|------|
|        | Undo      | Ctrl+Z   |          |      |
|        | Cut       | Ctrl+X   |          |      |
|        | Сору      | Ctrl+C   |          |      |
|        | Paste     | Ctrl+V   |          |      |
|        | Insert    | Þ        | Contact  |      |
|        | Delete    |          | Coil     |      |
|        | Search    | . Ctrl+F | Function |      |



[Contact]: Insert one contact (normally-open/closed)in the selected position. Pop-up a dialog to set the contact's style and address after executing the operating command.

| Contact/Coil    | ×            |
|-----------------|--------------|
| Style           | OK<br>CANCEL |
| Address X0001.2 |              |



[Coil] : Insert a output coil in the selected position. Pop-up a dialog to set the coil's style and address after

executing the operating command.

| Contact/Coil Setting | ×            |
|----------------------|--------------|
| Style                | OK<br>CANCEL |
| Address<br>G43.1     |              |

-[Function Instruction]: Insert a function instruction the selected position. Pop-up a dialog on the screen after

executing the operating command, and then press [OK] to pop-up a dialog of the corresponding function instruction setting after selecting the function instruction. For example, execute the operation [Edit]—[Insert]—[Function Instruction] for inserting a CODB instruction:

| Function Instr                                         | uction                        |                    | × |
|--------------------------------------------------------|-------------------------------|--------------------|---|
| Select in the Lo<br>or Input Functio<br>Right Edit Box | eft List Box<br>on Instructio | on Directly in the |   |
| ADDB<br>ALT<br>DIFD<br>DIFU<br>CALL<br>CMP             |                               | CODB               |   |
| CODB<br>CTRC<br>DECB<br>END1<br>END1                   |                               | ОК                 | ] |



Pop-up a setting window as Fig. 2-12 after selecting CODB and pressing [OK]:

| CODB-Binary Data Co                       | nversion                                |                                                             |                                                           | × |
|-------------------------------------------|-----------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|---|
| Setting<br>2 bytes<br>2<br>D0003<br>D0013 | Length1<br>Length2<br>Add_In<br>Add_Out | (Length of Data)<br>(Length of List)<br>(Input)<br>(Output) | DataList<br>No. Value<br>000 0<br>001 0<br>002 0<br>003 0 |   |
| ОК                                        |                                         |                                                             | CANCEL                                                    |   |



Set the corresponding parameter in the instruction setting dialog box and press [OK].

• [Find]: Find the required instruction or address in the ladder program. Pop-up a dialog for finding after executing the command:

| FInd                                       | ×                      |
|--------------------------------------------|------------------------|
| Find<br>Method Address 💌<br>Find What G8.4 | UP O<br>DOWNO<br>All O |
| OK                                         | CANCEL                 |

Fig. 2-13

Select [Address] or [Function Address] for finding type. Input the finding content in [Address] and press [UP], [DOWN] or [ALL] located at the right side to gradually find. The result of finding is displayed item by item in [Output] window as Fig. 2-14.

| Output                                                    |
|-----------------------------------------------------------|
| Finding G0008.4                                           |
| Start to find                                             |
| Found item No. 0: [Line (2)Column (8)]                    |
| ٥                                                         |
| Searching for 'G0008.4': 1 occurrence(s) have been found. |

Fig. 2-14

Double click "Found item No.XX;[Line (8) Column(1)]" to scroll ladder to the corresponding position.

• [Goto] : Rapidly scroll the current ladder to the required position and pop-up a menu as follows:

| File | Edit           | View              | PLC                     | Tool           | Windows      | Help        |  |
|------|----------------|-------------------|-------------------------|----------------|--------------|-------------|--|
|      | Ur             | ndo               | Ctrl+                   | Z              |              |             |  |
|      | Cu<br>Ca<br>Pa | ut<br>opy<br>iste | Ctrl+<br>Ctrl+<br>Ctrl+ | -X<br>-C<br>-V |              |             |  |
|      | In<br>De       | sert<br>elete     |                         | •              |              |             |  |
|      | Se             | arch              | Ctrl+                   | -F             |              |             |  |
|      | G              | oto               |                         | •              | Line         |             |  |
|      |                |                   |                         |                | Begin<br>End | Home<br>End |  |



**—[Line...]:** Rapidly scroll the ladder program to the specified line and pop-up a dialog as follows:





Set line and column number of ladder, and rapidly scroll the ladder program to the specified position.

[Program Starting]: Rapidly scroll the ladder program to starting position of program.

[End of Program]: Rapidly scroll the ladder program to end position of program.

#### 2.2.3 [View] Menu



**Book 3 CNC Configuration software** 

Fig. 2-17

- [Workspace]: display workspace window or not.
- [Output]: display output window or not.
- [Line Number]: display line number or not.
- [Toolbar]: display main toolbar or not.
- [StatusBar]: display statusBar or not
- [Instruction]: display instruction or not.

#### 2.2.4 [PLC] Menu



Fig. 2-18

• [Compile]: Compile the current ladder program by access key F9.

#### 2.2.5 [Tool]Menu



Fig. 2-19

- [Connect To CNC ]: Execute the command and connect to CNC by serial communication interface.
- [Disconnect To CNC]: Disconnect to CNC and release serial communication interface.
- [Write To CNC]: Write the current file to CNC to store.
- [Read From CNC]: Read a file from CNC to PC.

•[Communication setting]: Set parameters of serial communication interface, including selecting serial number and

baud rate.

• [Options]: Set the relative program options. Pop-up a dialog as follows after executing the command:

| Optio | ons                                     | x |
|-------|-----------------------------------------|---|
|       |                                         |   |
|       | 🙀 Application Start                     |   |
|       | Load last project automatically         |   |
|       | 🙀 Open the project                      |   |
|       | Open the ladder view automatically when |   |
|       | a Language: English                     |   |
|       |                                         |   |
|       |                                         |   |
|       |                                         |   |
|       |                                         |   |
|       |                                         |   |
|       |                                         |   |
| -     |                                         |   |
|       | Ok Cancel                               |   |
|       |                                         |   |

Fig. 2-20

# Chapter 3 TOOLBAR

#### **3.1 MAIN BOOLBAR**

| Fig. 3-1            |
|---------------------|
| Create new project  |
| Open project        |
| Save project        |
| Print Print         |
| Print Preview       |
| X Cut               |
| Сору                |
| Paste               |
| Find                |
| Search              |
| Compile             |
| Connect to CNC      |
| Disconnect with CNC |
| Write to CNC        |
| Read From CNC       |

# **3.2 TOOLBAR for EDITING LADDER**



| +⊦ 법▷ -↔          | 1 →  | Ļ  | <b>×</b> ⊷ ×↓ | 188 H   |
|-------------------|------|----|---------------|---------|
| Workspace         | END1 | ĸ  |               | Addres  |
| ∃ 📅 Project - (   | END2 | Γ  | 0001          | Y0003.  |
|                   | SET  | Н  | 0002          | Y0003.  |
|                   | RST  | e  | •             |         |
|                   | CMP  |    |               |         |
| n 🛃               | CTRC | H  |               | X0000.5 |
| 🖻 🐝 CNC (         | TMRB | H  | 0001          | —1 I—   |
|                   | MOVN | H  |               | X0001.2 |
|                   | DECB | he | 0002          |         |
| ⊡ <u>@v</u> NC Pr | CODB | ľ  |               | R0000.4 |
| <u></u>           | JMPB | H  | 0003          | —1/—    |
|                   | CALL | H  | 0004          | F0007.3 |
|                   | SP   | H  | 0004          |         |
|                   | SPE  | H  | 0005          | R0569.; |
|                   | ROTB | H  | 0000          |         |
|                   | DADT | H  | 0006          | R0402.4 |
|                   | ADDB | H  | 0000          |         |
|                   | SUBB | H  | 0007          |         |
|                   | DIFU | H  | 0001          | V00027  |
| •                 | DIFD | Ы  | •             | 70002.7 |
| Output            | MOVE | F  |               |         |
| Fit               | ALT  |    |               |         |

#### Fig. 3-3

Insert a horizontal connecting line at the cursor (access key F4) Insert a vertical connecting line at the cursor Delete the selected element of ladder(access key Delete) Delete a left vertical connecting line of the selected element Display line number of ladder or not Display annotation of ladder or not

# Chapter 4 SOFTWARE



## 4.1 WORKSPACE WINDOW

Fig. 4-1

Submenu items, including [Data setting table ], [Message table], [Ladder], [Parameter], [Tool offset], [Screw-pitch compensation], are operated by pressing right key of mouse. Pop-up a menu by pressing right key for [Ladder]





[Open] function is the same as that of double clicking left key.

# 4.2 DATA SETTING TABLE

Set data in internal data register(D, DC, DT) of PLC by Data Setting Table as Fig. 4-3.

| 🔓 GSKCC - project:wanmei -     | [Data setting tabl                                       | e]                |                                                                                             |  |  |
|--------------------------------|----------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------|--|--|
| 📔 File Edit View PLC Too       | l Windows Help                                           |                   | _ <u>-</u> |  |  |
| ] 🗅 🚅 🔛 🎒 🗟   X 🗉              | 6 <b>6</b>   A 🛱   I                                     | è 🖺 📲 📥           | 👱   🖻 66   💡                                                                                |  |  |
| ]++ 中   ↔ 日 +   → ↓            | *₀ ×₊   即 %                                              | i.                |                                                                                             |  |  |
| Workspace $\mathbf{P}$ $	imes$ | Address (1 byte)                                         | Valve (decimal)   | Comment(Input less than 30 charactors)                                                      |  |  |
| 🖃 🎹 Project - wanmei           | D0000                                                    | 0                 |                                                                                             |  |  |
| E PLC                          | D0001                                                    | 0                 |                                                                                             |  |  |
| Data setting table             | , D0002                                                  | 0                 |                                                                                             |  |  |
| A Message Cable                | •                                                        |                   |                                                                                             |  |  |
|                                | Address (4 bytes)                                        | Valve (decimal)   | Comment(Input less than 30 charactors)                                                      |  |  |
| 🗄 🐝 CNC configuring            | DC0000                                                   | 0                 |                                                                                             |  |  |
| Parameter                      | DC0001                                                   | 0                 |                                                                                             |  |  |
| Tooler offset                  | DC0002                                                   | 0                 |                                                                                             |  |  |
| Screw-pitch compe              | DC0003                                                   | n 1               |                                                                                             |  |  |
|                                | <u>                                      </u>            |                   | <b>_</b>                                                                                    |  |  |
|                                | Address (4 bytes) Comment(Input less than 30 charactors) |                   |                                                                                             |  |  |
|                                | DT0000                                                   | Used. Modified by | 65#                                                                                         |  |  |
|                                |                                                          | 1                 |                                                                                             |  |  |
|                                | DT0001                                                   | Used, Modified by | 66#                                                                                         |  |  |

Fig. 4-3

# 4.3 MESSAGE TABLE

Double click [Message table] by left key or click by right key to pop a menu, and execute [Open] to open the

message table as follows:

| Workspace 🛛 🕂 🗙                    | Address | Code | Message                                     |
|------------------------------------|---------|------|---------------------------------------------|
| ∃… <mark>…</mark> Project - wanmei | A0000.0 | 1000 | Long tool change time                       |
| E PLC                              | A0000.1 | 1001 | Alarm when the toolpost is not in-position  |
| Data setting table                 | A0000.2 | 1002 | Alarm when the tool change is not completed |
| A Message table                    | A0000.3 | 1003 |                                             |
| Informations                       | A0000.4 | 1004 |                                             |
| 🖃 🖑 CNC configuring                | A0000.5 | 1005 |                                             |
| Parameter                          | A0000.6 | 1006 |                                             |
| Tooler offset                      | 40000.7 |      |                                             |

Fig. 4-4

Three lines in Message Table are as follows:

- [A address]: A0.0  $\sim$  A24.7 can set 25  $\times$  8=200 points for outputting coil.
- [Code]: Double click [Code] and there is prompt signal to input 1000 9999 as alarm code when CNC displays

messages.

| Address | Code | Message 🔺                                   |
|---------|------|---------------------------------------------|
| A0000.0 | 1000 | Long tool change time                       |
| A0000.1 | 1001 | Alarm when the toolpost is not in-position  |
| A0000.2 | 1002 | Alarm when the tool change is not completed |
| A0000.3 | 1005 |                                             |
| A0000.4 |      |                                             |
| A0000.5 |      |                                             |
|         |      |                                             |

Fig. 4-5

• [Message]: There is a prompt signal after inputting the coil and the input method is to double click the list box by

left key, and character strings are input after there is a prompt cursor as Fig. 4-6

| Address | Code | Message 🔺                                   |
|---------|------|---------------------------------------------|
| A0000.0 | 1000 | Long tool change time                       |
| A0000.1 | 1001 | Alarm when the toolpost is not in-position  |
| A0000.2 | 1002 | Alarm when the tool change is not completed |
| A0000.3 | 1005 | hhh                                         |
| A0000.4 |      |                                             |
| A0000.5 |      |                                             |
| *0000 C |      |                                             |



# **4.4 LADDER**

| it the ladder progr        | am and       | annotation after opening its view. Refer to Cha | pter 2 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chapter 3 abou   |
|----------------------------|--------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| erations of each me        | nu and to    | olbar.                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| GSKCC - project:980TD - [I | Ladder ]     |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - D X            |
| File Edit View PLC Too     | Windows      | Help                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _ 8 ×            |
| ) 🚅 🔲 🚑 🔍 👗 🛙              | à 🔒 🚜        | 🗈 🕞 🖳 🔩 A 💌 🖻 🔐 🤶                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
|                            | × ×          |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| r 4P 0 L 1 + 4             | +++++   <br> | Comment(Input less than 30 charactors)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Project - 980TD            | 0001         | Yellow light                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| E RC                       | •            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| 🗌 🔲 Data setting table     |              |                                                 | Г                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
| A Message table            |              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Ladder                     |              | X0000.5 X0001.5                                 | B0000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ł                |
| Informations               | 0001         |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Signal emerger   |
| Parameter                  |              | X0001.2 R0000.0 X0003.2                         | G0008.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
| 🔤 Tooler offset            | 0002         |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Emergent stop :  |
| Screw-pitch compe          |              | R0000.4                                         | Ŭ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - ·              |
| 🖻 🚾 NC Programs            | 0003         | /                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| ······ 🖹 O0456             |              | F0007.3 F0001.3                                 | R0055.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                            | 0004         |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Interlock signal |
|                            |              | R0569.7                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
|                            | 0005         |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
|                            |              | R0402.4                                         | r and a second se |                  |
|                            | 0006 I       |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
|                            |              |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |

#### 4.5 PROGRAM VERSION

Double click the menu to pop-up its input box and input the corresponding message.

| GSKCC-Project 980TE | ) : the information of the application version ³Ì | × |
|---------------------|---------------------------------------------------|---|
|                     |                                                   |   |
| Designer:           | GSK                                               | 1 |
| Version:            | V1.90                                             |   |
| Comment:            | 980TD-2 standard ladder (980T interface)          |   |
|                     | ОК                                                |   |

Fig. 4-8

# **4.6 PARAMETER**

|                         | GSKCC - project:980TD - [       | ameter ]                                        |          |  |  |  |  |
|-------------------------|---------------------------------|-------------------------------------------------|----------|--|--|--|--|
|                         |                                 | indows hep                                      | 비미스      |  |  |  |  |
|                         |                                 |                                                 |          |  |  |  |  |
|                         |                                 |                                                 |          |  |  |  |  |
| õ                       | Workspace $- \mathbf{P} \times$ | Number Value Data type Range Illustration       |          |  |  |  |  |
| ok                      | Project - 980TD                 | 0001 00011001 BIT *** *** AC5 HWL XRC *** ***   |          |  |  |  |  |
| 3                       | Data setting table              | 0002 00100000 BIT *** *** RS232 *** *** NRC *** | ₽        |  |  |  |  |
| $\Omega$                | A Message table                 |                                                 |          |  |  |  |  |
|                         | Ladder                          | Mode Set by Serial Number State Par. Data Par.  |          |  |  |  |  |
| $\overline{\mathbf{O}}$ | E 🏶 CNC configuring             |                                                 |          |  |  |  |  |
| 010                     | Parameter                       | - State parameter Parameter Input               |          |  |  |  |  |
| fi                      | Screw-pitch comp                | Data parameter                                  |          |  |  |  |  |
| Ē                       | NC Programs                     | Number j i 🖂 Value jouriour                     |          |  |  |  |  |
| a(                      | l <mark>≧</mark> } O0456        | Di                                              |          |  |  |  |  |
| ioi                     |                                 |                                                 |          |  |  |  |  |
| n s                     |                                 | BIT7:1/0: Standby                               |          |  |  |  |  |
| 0f                      |                                 | BIT6:1/0: Standby                               |          |  |  |  |  |
| ťw                      |                                 | 🔲 BIT5:1/0: Standby                             |          |  |  |  |  |
| ar                      |                                 | BIT4:1/0: Spindle control by transducer         |          |  |  |  |  |
| e                       |                                 | BIT3:1/0: Handwheel or incremental feed         |          |  |  |  |  |
|                         |                                 | BIT2:1/0: Radius or diameter programing         |          |  |  |  |  |
|                         |                                 | BIT1:1/0: Standby                               |          |  |  |  |  |
|                         |                                 | BIT0:1/0: Standby                               |          |  |  |  |  |
|                         |                                 |                                                 |          |  |  |  |  |
|                         | -<br>-                          |                                                 | -        |  |  |  |  |
|                         | Output                          |                                                 |          |  |  |  |  |
|                         | (votpor                         |                                                 | <u> </u> |  |  |  |  |
|                         |                                 |                                                 | _        |  |  |  |  |
|                         | Ready                           |                                                 | //.      |  |  |  |  |

Fig. 4-9

#### 4.6.1 Modifying Parameters by Sequence Number

User interface is as Fig.4-11 and the right property window is the to edit parameters when selecting sequence number to modify parameters.

| <ul> <li>Setting by serial number</li> <li>State parameter</li> </ul> | Parameter Input                         |
|-----------------------------------------------------------------------|-----------------------------------------|
| Data parameter                                                        | Number 1 🔤 Value 00011001               |
|                                                                       | Explain                                 |
| 3                                                                     | BIT7:1/0: Standby                       |
|                                                                       | BIT6:1/0: Standby                       |
|                                                                       | BIT5:1/0: Standby                       |
|                                                                       | BIT4:1/0: Spindle control by transducer |
|                                                                       | BIT3:1/0: Handwheel or incremental feed |
|                                                                       | BIT2:1/0: Radius or diameter programing |
|                                                                       | BIT1:1/0: Standby                       |
|                                                                       | BIT0:1/0: Standby                       |

Fig. 4-11

Color cord circle in the above figure:

- ① Editing box for parameter;
- ② Choice box for bit parameter set. In the box, click the corresponding bit parameter set 1/0 by left key and the corresponding bit value will be updated in ①;
- ③ Menu of parameter data can be switch by right clicking the above property menu.

| Mode Set by Serial Number                                                                     | State Par. Data Par.        |
|-----------------------------------------------------------------------------------------------|-----------------------------|
| <ul> <li>Setting by serial number</li> <li>State parameter</li> <li>Data parameter</li> </ul> | Parameter Input             |
| _                                                                                             | Number   44 🚍 Value   19200 |
|                                                                                               | Baudrate                    |
|                                                                                               |                             |
|                                                                                               |                             |
|                                                                                               |                             |
|                                                                                               |                             |

Fig. 4-12

# **4.7 TOOL OFFSET**

| GSKCC - project:980TD - [T | ooler offset | ]     |         |          |   | ×        |
|----------------------------|--------------|-------|---------|----------|---|----------|
| File Edit View PLC Tool    | Windows      | Help  |         |          |   |          |
| 🗅 🚅 🔛   🍜 🖻   👗 🎙          | a 🖪 🗛        | R 🕑 堶 | 點 솔 포 🗆 | ▶ 66   🦹 |   |          |
| ++ 中   → - ↓ → ↓           | ¥. ×.        | 198 H |         |          |   |          |
| Workspace 🛛 🕂 🗙            | Number       | ×     | Z       | R        | Т | ·        |
| ⊡                          | 000          | 0.000 | 0.000   | 0.000    | 0 |          |
|                            | 001          | 0.000 | 0.000   | 0.000    | 0 |          |
| Data setting table         | 002          | 0.000 | 0.000   | 0.000    | 0 |          |
|                            | 003          | 0.000 | 0.000   | 0.000    | 0 |          |
| Informations               | 004          | 0.000 | 0.000   | 0.000    | 0 |          |
| 🖻 🖑 CNC configuring        | 005          | 0.000 | 0.000   | 0.000    | 0 |          |
| Parameter                  | 006          | 0.000 | 0.000   | 0.000    | 0 |          |
| Tooler offs                | n (07        | 0.000 | 0.000   | 0.000    | 0 |          |
| Screw-pitc                 | 008          | 0.000 | 0.000   | 0.000    | 0 |          |
|                            | 009          | 0.000 | 0.000   | 0.000    | 0 |          |
|                            | 010          | 0.000 | 0.000   | 0.000    | 0 |          |
|                            | 011          | 0.000 | 0.000   | 0.000    | 0 |          |
|                            | 012          | 0.000 | 0.000   | 0.000    | 0 | _        |
|                            |              |       |         |          | - | <u> </u> |
| Output                     |              |       |         |          |   | ф ×      |
|                            |              |       |         |          |   |          |
| Ready                      |              |       |         |          |   |          |
| Ready                      |              |       |         |          |   |          |

# **4.8 SCREW-PITCH COMPENSATION**

|                              |        |   | _ |         |
|------------------------------|--------|---|---|---------|
| Workspace $\mathbf{P} 	imes$ | Number | X | 2 | L       |
| 🖃 🎹 Project - 980TD          | 001    | 0 | 0 |         |
| PLC                          | 002    | 0 | 0 |         |
| Data setting table           | 003    | 0 | 0 |         |
| A Message Cable              | 004    | 0 | 0 |         |
| Informations                 | 005    | 0 | 0 |         |
| 🖻 🖑 CNC configuring          | 006    | 0 | 0 |         |
| Parameter                    | 007    | 0 | 0 |         |
| Tooler offset                | 008    | 0 | 0 |         |
| Screw-pitch co               | Open   | 0 | 0 |         |
|                              | 010    | 0 | 0 |         |
|                              | 011    | 0 | 0 |         |
|                              | 012    | 0 | 0 |         |
|                              | 013    | 0 | 0 |         |
|                              | 014    | 0 | 0 |         |
|                              | 015    | 0 | 0 |         |
|                              | 016    | 0 | 0 |         |
|                              | 017    | 0 | 0 | <b></b> |
| Output                       |        |   |   | д X     |

Fig. 4-15

# 4.9 PART PROGRAM





As Fig. 4-16, right click [CNC Program] to pop-up: [New ...] and [Load file]. New file is to create one CNC part program to project and Load file is to load a existed one on disk to project. Their methods are as follows: 1
-

#### 4.9.1 Create a New NC Program

Pop-up a dialog box as Fig.4-17 after executing [New...] in Fig. 4-16, prompting to input program name(note: O is at program name's home and 1-4 digits are followed).





After confirming CNC part program in the workspace, the created CNC part program is displayed and is opened to edit programs. Save them after editing the programs.





### 4.9.2 Load to CNC Part Program

Pop-up a dialog box as Fig.4-19 after executing [Load File] in Fig. 4-16, and select the stored CNC part program on the disk..

| NC program f   | ile                                    |         | ? ×     |
|----------------|----------------------------------------|---------|---------|
| Look in: 🔁     | 1                                      | - 🗢 🔁   | -111 *  |
| (Ⅲ) 00000      | ≝ 00006                                |         | ≝ 00036 |
| ≝ 00001        | `````````````````````````````````````` | 🖺 O0013 | ₿ 00088 |
| E 00002        | 🖺 00008                                | 🖺 O0015 | ≝ 00089 |
| E 00003        | (Ⅲ) 00009                              | 🖺 O0020 | ▤ 00090 |
| E 00004        | 🗒 O0010                                | 🖺 O0022 | 🗒 O0099 |
| ≝ 00005        | 🗒 O0011                                | 🖺 O0035 |         |
| •              | 1                                      |         | Þ       |
| File name:     | 00008                                  |         | Open    |
| Files of type: | NC Program file(*.cnc)                 | •       | Cancel  |



Click [Open] to pop-up a dialog box as Fig.4-20:

| Add CNC Files | ×      |
|---------------|--------|
| Name          | ОК     |
|               | CANCEL |
|               |        |



#### 4.9.3 NC Part Program management

Fig. 4-20 After confirming the file name, load it to the current project. The system prompts to set a new program name again if there is the same one. **.9.3 NC Part Program management** Manage part programs after operating the above methods, including modification, deletion. Open the corresponding program after double clicking program file menu as Fig. 4-20. corresponding program after double clicking program file menu as Fig. 4-20.

# 黛广╸州数控



Fig. 4-21

Open programs or delete the unnecessary programs by right clicking menu as Fig. 4-22.

| 🔚 GSKCC - proje                                                                                                                                                                                          | ct:980TD - [N                  | IC Program -00015]                                                                                                                                                                                                                 | - D × |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 📄 File Edit Vie                                                                                                                                                                                          | w PLC Tool                     | Windows Help                                                                                                                                                                                                                       | _ 8 × |
| 🗋 🗅 📂 🖬 🛛 🚝                                                                                                                                                                                              | 30. %                          | b 🛱 🛤 🗛 📴 🖺 🐮 ≙ 🔟   ≥ 66   🥐                                                                                                                                                                                                       |       |
| +⊦ 邙  -∽ €                                                                                                                                                                                               | $] +   \rightarrow \downarrow$ | <b>*₀ *↓</b>   ⊞# 38                                                                                                                                                                                                               |       |
| Workspace           □         III           III         Project - 98           III         III           IIII         IIII           IIIII         IIIIII           IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |                                | O0015 (00015)<br>G0 X100 Z100<br>M3 S200<br>T0100<br>G0 X90 Z80<br>G98 G73 U16.5 W0 R3 F400<br>G73 P1 Q2 U0.5<br>N1 G0 X40 Z75<br>G1 X60 Z60<br>G2 U10 W-5 R5<br>G1 X80 Z40<br>N2 W-10<br>G70 P1 Q2<br>G0 X100 Z100<br>M5<br>T0300 |       |
| - ashar                                                                                                                                                                                                  | Delete                         |                                                                                                                                                                                                                                    |       |
| Ready                                                                                                                                                                                                    | Properties                     | ·                                                                                                                                                                                                                                  | ٩ //  |

Fig. 4-22

## Chapter 5 COMMUNICATION

GSKCC communicates with CNC by RS232, during which ladder of current project and parameters can be transmitted to CNC or ladder and parameters can be read from CNC

Rightly connect COMM port of PC with CNC communication interface, and set the corresponding parameters of GSKCC. Baud rate should be set same as that of CNC as follows:

Select [Tool] – [Communication Settings] to pop-up a dialog box (Fig. 5-2), and set the port and baud rate. Start the next operation after confirming.

| File | Edit | View | PLC | Tool Windows Help                   |  |
|------|------|------|-----|-------------------------------------|--|
|      |      |      |     | Connect To CNC<br>Disconnect To CNC |  |
|      |      |      |     | Modify Dog Password                 |  |
|      |      |      |     | Write To CNC<br>Read From CNC       |  |
|      |      |      |     | Communication Settings              |  |
|      |      |      |     | Options                             |  |
|      |      |      |     | Fig. 5-1                            |  |
|      |      |      | Com | nunication Settings                 |  |
|      |      |      |     | Port 1<br>Baudrate(bps) 115200      |  |
|      |      |      |     | OK CANCEL                           |  |

Fig. 5-2

### **5.1 TRANSMIT FILES to CNC**

#### 1. Connect with CNC

Run GSKCC and open the required project. Click Difference or [Tool]—[ Connect to CNC] in Fig.5-1, and GSKCC prompts a dialog box [Connect To CNC successfully!]





After GSKCC is connected to CNC successfully, the toolbar is as follows: 连接成功后的工具条如下:





**Solution** (Disconnect with CNC), (Transfer current project to CNC), (Read Files from CNC) are in high light to execute the next operations.

#### 2. File transmitting

Start to transmit files when CNC is in Edit mode,.

When the system transmits the screw-pitch compensation or PLC program, the user level of CNC is not

less than 2, and the parameter switch is ON for transmitting;

When the system transmits the parameter, the user level of CNC is not less than 3 and the parameters

switch is ON for transmitting;

When the system transmits tool offset, the user level of CNC is not less than 4 and the parameters switch is

ON for transmitting;

When the system transmits part program, the user level of CNC is not less than 4 and the program switch is

ON for transmitting. Press for transmit files to pop-up a dialog box as follows:

| ownload Project          | X        |
|--------------------------|----------|
| Select Files             |          |
| 🖃 🔽 Project - 1          |          |
| 🛛 🔽 Ladder program file  |          |
| 🚊 🗖 CNC configuring      |          |
|                          |          |
| Tooler offset            |          |
| screw-pitch compensation |          |
| 🖻 🗖 NC program file      |          |
| 00000                    |          |
|                          | CANCEL   |
| 00002                    |          |
|                          |          |
| 00004                    | Download |
|                          |          |

Click the left box in [Download Project] to select the required files. The system selects files when there is a red  $\checkmark$ , otherwise, the system does not. Click [Download] to transmit files. There is a prompting box in transferring to display the current communication state, rate and so on.

| G | 5KCC-File Transferi                                                                   | ring                                                                                    |                                                 |                                                           |                                                      | ×      |
|---|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------|
|   | ## C:\Documents an<br>## C:\Documents an<br>## C:\Documents an<br>-> C:\Documents and | d Settings\Adminis<br>d Settings\Adminis<br>d Settings\Administ<br>I Settings\Administr | trator\De<br>trator\De<br>trator\De<br>rator\De | esktop\1\00<br>esktop\1\00<br>esktop\1\00<br>esktop\1\000 | 003.cnc<br>004.cnc<br>035.cnc<br><mark>36.cnc</mark> | •<br>• |
|   |                                                                                       | C                                                                                       | ommunic                                         | ation State -                                             |                                                      |        |
|   | Current State:                                                                        | Send instruction                                                                        | of file                                         | Last Error:                                               |                                                      |        |
|   | Retrying Times:                                                                       | 0                                                                                       |                                                 | Rate:<br>5/10                                             | 0 Bytes/Second                                       |        |
|   | Current File:                                                                         | 0K /1K                                                                                  |                                                 |                                                           |                                                      |        |
|   | Total Progress:                                                                       | %                                                                                       |                                                 |                                                           |                                                      |        |
|   |                                                                                       |                                                                                         | CAI                                             | NCEL                                                      |                                                      |        |

Fig. 5-6

## **5.2 UPLOAD FILES from CNC**

Run GSKCC, and pop-up a dialog box after connecting to CNC and clicking

| Upload                                                                                                                                                       | ×                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Select Files<br>GSK980TD CNC<br>Ladder program file<br>CNC configuring<br>Parameter<br>Tooler offset<br>screw-pitch compensation<br>CNC program file<br>USER | Upload files<br>How to save<br>New Project<br>New Project<br>Current Project |
|                                                                                                                                                              | CANCEL                                                                       |



For options pointed by cursor, [How to save] of [Upload files] can be selected:

a. **[New Project]:** If a project is opened currently, the system will close the current project and prompts the user to create a project to save the uploaded files when selecting [Upload files]; if a project is not opened, the system directly prompts to create a project to save the uploaded files.

b. [Current Project]: If a project is opened currently, one option is that <u>the current opened project is</u> <u>replaced by the upload file data</u>, namely, the data of current project is replaced by uploading PLC programs, parameters from CNC.

After a file is selected in [Select Files], click [Upload] to upload the selected file to the project, and the corresponding setting view is automatically updated by the uploaded data.

## **5.3 DISCONNECT with CNC**

After the communication is executed, is clicked to disconnect with CNC in order that the serial is released or it is used by other application programs when GSKCC is connected to CNC.

# BOOK APPENDIX

# APPENDIX

# APPENDIX 1: INPUT SINGAL (X)

| Λ0                                                                                                    | Input                                                     | Input                                                                                    | ESP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Input                                                                        | XDEC                                                                                                   | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Input                                  | Input                     |
|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------|
| Pin                                                                                                   | XS39.12                                                   | XS39.11                                                                                  | XS40.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | XS40.22                                                                      | XS40.1                                                                                                 | XS40.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | XS40.3                                 | XS40.4                    |
|                                                                                                       |                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                           |
| X1                                                                                                    | Input                                                     | Input                                                                                    | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Input                                                                        | ZDEC                                                                                                   | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Input                                  | Input                     |
| Pin                                                                                                   | XS40.5                                                    | XS40.6                                                                                   | XS40.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | XS40.7                                                                       | XS40.9                                                                                                 | XS40.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XS40.8                                 | XS40.20                   |
| <u> </u>                                                                                              |                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                        | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I                                      | I                         |
| X2                                                                                                    | Input                                                     | Input                                                                                    | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Input                                                                        | Input                                                                                                  | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Input                                  | Input                     |
| Pin                                                                                                   | XS41.2                                                    | XS41.21                                                                                  | XS41.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XS41.22                                                                      | XS41.10                                                                                                | XS41.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XS41.13                                | XS41.1                    |
|                                                                                                       |                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                           |
| X3                                                                                                    | Input                                                     | Input                                                                                    | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Input                                                                        | Input                                                                                                  | Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Input                                  | Input                     |
| Pin                                                                                                   | XS41.4                                                    | XS41.6                                                                                   | XS41.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | XS41 19                                                                      | XS41 7                                                                                                 | XS41 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XS41.8                                 | XS41 3                    |
| 1 m                                                                                                   |                                                           | 710 11.0                                                                                 | 1011.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 101117                                                                       | 1011.7                                                                                                 | 1011.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1011.0                                 | 1011.5                    |
| <b>X</b> 8                                                                                            |                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ESP                                                                          |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                           |
| Din                                                                                                   |                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | XS40.10                                                                      |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                           |
| 1 111                                                                                                 |                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7340.10                                                                      |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                           |
| V 20                                                                                                  | 7                                                         | C                                                                                        | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | А                                                                            | 3                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                      | Δ                         |
| A20                                                                                                   | /                                                         | 0                                                                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                            | 3                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        | U                         |
|                                                                                                       |                                                           |                                                                                          | ۲ ( h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                           |
| Key                                                                                                   | SKIP                                                      | STRUCE                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              | MACHINE ZEF                                                                                            | 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AUTO                                   |                           |
|                                                                                                       |                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MPG                                                                          |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                           |
|                                                                                                       |                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                           |
|                                                                                                       |                                                           |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                              |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |                           |
|                                                                                                       |                                                           |                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                              | -                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | 2                         |
| X21                                                                                                   | 7                                                         | 6                                                                                        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                            | 3                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                      | 0                         |
| X21                                                                                                   | <b>7</b>                                                  | <b>6</b>                                                                                 | <b>5</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                            | 3                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                           |
| X21<br>Key                                                                                            | 7<br>〔×@                                                  | 6<br>.1                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                            | 3                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br><sup>●</sup> MST<br>M. S. T. LOCK | 0<br>MST<br>M. S. T. LOOP |
| X21<br>Key                                                                                            | 7<br>〔×@                                                  | 6<br>[                                                                                   | 5<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>4</b>                                                                     | 3                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>♥♥<br>M. S. T. LOCK               | O<br>MST<br>M. S. T. LOCH |
| X21<br>Key                                                                                            | 7<br>(×@)                                                 | 6<br>[                                                                                   | 5<br>[]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>4</b>                                                                     | 3                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>M. S. T. LOCK                     | 0<br>MST<br>M. S. T. LOCK |
| X21<br>Key                                                                                            | 7<br>〔×@                                                  | 6<br>[                                                                                   | 5<br>[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4                                                                            | 3                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>MST<br>M. S. T. LOCK              | 0                         |
| X21           Key           X22                                                                       | 7<br>ש                                                    | 6<br>0.1<br>6                                                                            | 5<br>()<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4<br>()<br>4                                                                 | 3<br>PROGRAM ZERO                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                           |
| X21           Key           X22           Key                                                         | 7<br>ש<br>7                                               | 6<br>6<br>6                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>()<br>4                                                                 | 3<br>PROGRAM ZERO<br>3                                                                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>                                  |                           |
| X21           Key           X22           Key                                                         | 7<br>(×@)<br>7<br>(Z>)                                    | 6<br>.1<br>6<br>.1                                                                       | 5<br>()<br>5<br>(Z)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>()<br>4                                                                 | 3<br>PROGRAM ZERO                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>M.S.T.LOCK                        |                           |
| X21           Key           X22           Key                                                         | 7<br>ש<br>7                                               | 6<br>[                                                                                   | 5<br>( )<br>5<br>( ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>()<br>4                                                                 | 3<br>PROGRAM ZERO                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1<br>M. S. T. LOCK                     |                           |
| X21           Key           X22           Key                                                         | 7<br>× ©<br>7<br>× 0                                      | 6<br><br>6<br>6<br>6                                                                     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>(                                                                       | 3<br>PROGRAM ZERO<br>3<br>3<br>3                                                                       | 2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |                           |
| X21           Key           X22           Key           X23           Key                             | 7<br>ש<br>7<br>ש                                          | 6<br>6<br>6<br>6<br>6<br>6                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>()<br>4                                                                 | 3<br>PROGRAM ZERO 3 3 3                                                                                | 2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                           |
| X21           Key           X22           Key           X23           Key                             | 7<br>× ©<br>7<br>× ©<br>7                                 | 6<br>□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                               | 5<br>(],[]<br>(],01<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>(]<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>()<br>5<br>() | 4<br>(                                                                       | 3<br>PROGRAM ZERO 3 3                                                                                  | 2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                           |
| X21           Key           X22           Key           X23           Key                             | 7<br>× ©<br>7<br>× ©                                      | 6<br>6<br>6<br>6<br>6<br>6<br>6<br>100<br>100<br>100<br>100                              | 5<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4<br>(                                                                       | 3<br>PROGRAM ZERO 3 3                                                                                  | 2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                           |
| X21           Key           X22           Key           X23           Key           X24               | 7<br>× ©<br>7<br>√<br>√<br>√<br>√<br>√<br>√<br>√<br>√<br> | 6<br>□□□<br>□□□<br>□□□<br>□□□<br>□□□<br>□□□<br>□□□<br>□                                  | 5<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4<br>().001<br>4<br>().001<br>4<br>().001<br>4<br>().001<br>4<br>().001<br>4 | 3<br>PROGRAM ZERO<br>3<br>3<br>3<br>3<br>3                                                             | 2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |                           |
| X21           Key           X22           Key           X23           Key           X24               | 7<br>× ©<br>7<br>× ©<br>7<br>× ©<br>7                     | 6<br>□.1<br>0.1<br>6<br>0.1<br>6<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 5<br>(],0,01<br>5<br>(],0,01<br>5<br>(],0,01<br>5<br>(],0,01<br>5<br>(],0,01<br>5<br>(],0,01<br>5<br>(],0,01<br>5<br>(],0,01<br>5<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],0,01<br>(],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>(<br>4<br>(<br>4<br>( %)                                                | 3<br>PROGRAM ZERO<br>3<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                           |
| X21           Key           X22           Key           X23           Key           X24           Key | 7<br>× ©<br>7<br>× ©<br>7<br>× ©<br>7<br>× ©<br>7<br>× ©  | 6<br>□□□<br>□□□<br>□□□<br>□□□<br>□□□<br>□□□<br>□□□<br>□                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>()                                                                      | 3<br>PROGRAM ZERO<br>3<br>3<br>3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                        |                           |
| X21           Key           X22           Key           X23           Key           X24           Key | 7<br>× ©<br>7<br>× ©<br>7<br>× ©<br>7<br>× ©<br>7<br>× ©  | 6                                                                                        | 5<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]<br>(]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4<br>()<br>4<br>(%)<br>(~)                                                   | 3<br>PROGRAM ZERO<br>3<br>3<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                        |                           |
| X21           Key           X22           Key           X23           Key           X24           Key | 7<br>× ©<br>7<br>× ©<br>7<br>× ©<br>7<br>× ©<br>7<br>× ©  | 6<br>□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4<br>().001<br>4<br>())<br>4<br>())<br>())<br>())<br>())<br>())<br>()        | 3<br>PROGRAM ZERO<br>3<br>3<br>3<br>3<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 2<br>2<br>2<br>2<br>2<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |                           |

#### ℠州数控 61

| Key |   |   |   |   |   |   |   | 6 | PAUSE |
|-----|---|---|---|---|---|---|---|---|-------|
| X26 | ] | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0     |
| Key |   |   |   |   |   |   |   |   | RESET |

# APEENDIX 2: OUTPUT SIGNAL (Y)

| Address | Signal                                | Address | Signal                                 |
|---------|---------------------------------------|---------|----------------------------------------|
| Y00.0   | Universal output                      | Y01.0   | Universal output                       |
| Y00.1   | Universal output                      | Y01.1   | Universal output                       |
| Y00.2   | Universal output                      | Y01.2   | Universal output                       |
| Y00.3   | Universal output                      | Y01.3   | Universal output                       |
| Y00.4   | Universal output                      | Y01.4   | Universal output                       |
| Y00.5   | Universal output                      | Y01.5   | Universal output                       |
| Y00.6   | Universal output                      | Y01.6   | Universal output                       |
| Y00.7   | Universal output                      | Y01.7   | Universal output                       |
| Y02.0   | Universal output                      | Y03.0   | Universal output                       |
| Y02.1   | Universal output                      | Y03.1   | Universal output                       |
| Y02.2   | Universal output                      | Y03.2   | Universal output                       |
| Y02.3   | Universal output                      | Y03.3   | Universal output                       |
| Y02.4   | Universal output                      | Y03.4   | Universal output                       |
| Y02.5   | Universal output                      | Y03.5   | Universal output                       |
| Y02.6   | Universal output                      | Y03.6   | Universal output                       |
| Y02.7   | Universal output                      | Y03.7   | Universal output                       |
| Y04.0   | Auxiliary function locked indicator   | Y05.0   | Coolant indicator on machine control   |
|         |                                       |         | panel                                  |
| Y04.1   | Machine locked indicator              | Y05.1   | Spindle clockwise rotatition indicator |
|         |                                       |         | on machine control panel               |
| Y04.2   | Optional block jump indicator         | Y05.2   | JOG mode indicator on machine          |
|         |                                       |         | control panel                          |
| Y04.3   | Single block indicator                | Y05.3   | Handwheel/increment mode indicator     |
|         |                                       |         | on machine control panel               |
| Y04.4   | Rapid run indicator                   | Y05.4   | Machine reference poin return mode     |
|         |                                       |         | indicator on machine control panel     |
| Y04.5   | End indicator for program             | Y05.5   | MDI mode indicator on machine          |
|         | reference point return/machine        |         | control panel                          |
|         | reference point return in Z direction |         |                                        |
| Y04.6   | End indicator for program             | Y05.6   | Auto mode indicator on machine         |
|         | reference point return/machine        |         | control panel                          |
|         | reference point return in Y direction |         |                                        |
| Y04.7   | End indicator for program             | Y05.7   | Edit mode indicator on machine         |
|         | reference point return/machine        |         | control panel                          |
|         | reference point return in X direction |         |                                        |

|       |                                      | - |       |                                       |
|-------|--------------------------------------|---|-------|---------------------------------------|
| Y06.0 | Spindle stopped indicator on machine |   | Y07.0 | Tool change indicator on machine      |
|       | control panel                        |   |       | control panel                         |
| Y06.1 | Rapid feed indicator on machine      |   | Y07.1 | Spindle counterclockwise rotation     |
|       | control panel                        |   |       | indicator on machine control panel    |
| Y06.2 | Program reference point return mode  |   | Y07.2 | Handwheel indicator in Z direction on |
|       | indicator on machine control panel   |   |       | machine control panel                 |
| Y06.3 | Dry run indicator on machine control |   | Y07.3 | Handwheel indicator in Y direction on |
|       |                                      |   |       | machine control panel                 |
| Y06.4 | Auxiliary function locked indicator  |   | Y07.4 | Handwheel indicator in X direction on |
|       | on mchine control panel              |   |       | machine control panel                 |
| Y06.5 | Machine locked indicator on machine  |   | Y07.5 | 0.1 feedrate indicator on machine     |
|       | control panel                        |   |       | control panel                         |
| Y06.6 | Optional block jump indicator on     |   | Y07.6 | 0.01 feedrate indicator on machine    |
|       | machine control panel                |   |       | control panel                         |
| Y06.7 | Single block indicator on machine    |   | Y07.7 | 0.001 feedrate indicator on machine   |
|       | control panel                        |   |       | control panel                         |
| Y08.0 | Cycle start indicator on machine     |   | Y08.5 | Min. rapid override indicator on      |
|       | control panel                        |   |       | machine control panel                 |
| Y08.1 | Min.feedrate override indicator on   |   | Y08.6 | Max. spindle override indicator on    |
|       | machine control panel                |   |       | machine control light                 |
| Y08.2 | Max. rapid override indicator on     |   | Y08.7 | Spindle jog indicator on machine      |
|       | machine control panel                |   |       | control panel                         |
| Y08.3 | Min. spindle override indicator on   |   | Y09.0 | Feed dwell indicator on machine       |
|       | machine control panel                |   |       | control panel                         |
| Y08.4 | Max.feedrate override indicator on   |   | Y09.1 | Dry running indicator                 |
|       | machine control panel                |   |       |                                       |
|       |                                      |   |       |                                       |

# **APPENDIX 3: G, F SIGNAL**

## (Function sequence)

| Function            | Address | Signal name                                                   | Code               | Chapter |
|---------------------|---------|---------------------------------------------------------------|--------------------|---------|
| Alarm signal        | F1.0    | Alarm signal                                                  | AL                 | 2.3     |
| Cancel override     | G6.4    | Override canceling signal                                     | OVC                | 6.4     |
|                     | G12     | Feedrate override signal                                      | FV0~FV7            | 6.3.1   |
| Feedrate override   | F210.0  | External feedrate override switch input<br>*0V1~*0V8 is valid | F_SOVI             | 12.7.1  |
| Optional block jump | G44.0   | Optional block jump signal                                    | BDT                | 5.6     |
| signal              | F4.0    | Detection signal for optional block jump                      | MBDT               | 3.0     |
| User macro program  | G54,G55 | User macro program input signal                               | UI0~UI15           | 10.1    |
| signal              | F54,F55 |                                                               | UO0~UO15           | 22      |
|                     | F56~F59 | User macro program output signal                              | U0100 ~<br>U0131 ~ | 10.2    |
|                     | F210.6  | Shield external cycle start signal (ST)                       | MST                | 12.7    |
|                     | F210.5  | Shield external pause signal(SP)                              | MSP                | 12.7    |
| G7.2                |         | Cycle start signal                                            | ST                 | 5.1     |
|                     | G8.5    | Feed pause signal                                             | SP                 |         |
|                     | F0.5    | Cycle start alarm signal                                      | STL                |         |

# 黛௴州数控

|                       | F0.4                 | Feed dwell alarm signal                        | SPL                       |         |  |
|-----------------------|----------------------|------------------------------------------------|---------------------------|---------|--|
|                       | F0.7                 | Automatic run signal                           | OP                        |         |  |
| Function              | Address              | Signal name                                    | Code                      | Chapter |  |
| Axis moving state     | F102.0~ F102.3       | Axis moving signal                             | MV1~MV4                   |         |  |
| output                | E106.0 E106.2        | A                                              | MVD1 $\sim$               | 1.1     |  |
|                       | $F106.0 \sim F106.3$ | Axis motion direction                          | MVD4                      |         |  |
|                       | G29.4                | Spindle speed in-position signal               | SAR                       | 8.4     |  |
|                       | C20                  | Smindle exempte signal                         | SOV0 $\sim$               |         |  |
| Spindle speed control | 630                  | Spindle override signal                        | SOV7                      | 8.2.1   |  |
|                       | G29.6                | Spindle stop signal                            | *SSTP                     |         |  |
|                       | G200.0               | Spindle jog signal                             | SPHD                      | 0.2     |  |
|                       | F199.0               | Spindle jog test signal                        | MSPHD                     | 8.3     |  |
|                       | F200.4               | Spindle mode signal                            | SIMSPL                    | 8       |  |
|                       | F208.3               | Spindle enables the input singal is valid      | SPEN                      | 12.1.2  |  |
| Saindle outomotio     | F208.7               | Valid signal of automatic gear shifting        | AGER                      |         |  |
| spindle automatic     | E208 6               | Detection signal of gear shifting in-position  |                           | 8.2.2   |  |
| gear smitting         | F208.0               | when automatic gear shifting to 1, 2           | AGIN                      |         |  |
|                       | G18.0, G18.1         | Handwheel feed axis selection signal           | HS1A,HS1B                 | 3.2.1   |  |
| Handwhaal faad        | G19.4, G19.5         | Handwheel/Incremental override signal          | MP1,MP2                   | 3.2.2   |  |
| nandwheel leed        | E211_1               | 0.1mm increment selection signal on            | SINC                      | 1296    |  |
|                       | F211.1               | Handwheel/Incremental mode                     | SINC                      | 12.8.0  |  |
|                       | F4 5                 | Machine reference point return detection       | MDEE                      | 252     |  |
|                       | 14.5                 | signal                                         | WIKLI                     | 2.3.2   |  |
|                       | E201 5               | Level selection for deceleration signal when   | DECI                      |         |  |
| Machine reference     | 1.201.3              | executing machine reference point return       | DLCI                      | 12.2    |  |
|                       | F205 2               | Self-hold of axis motion is valid in reference | ZNIK                      | 12.2    |  |
| point                 | 1205.2               | point return                                   | ZIVIK                     |         |  |
|                       | $F01.0 \sim F01.3$   | End signal of machine reference point          | 7 <b>P</b> 1~7 <b>P</b> 4 |         |  |
|                       | 194.0 194.3          | return                                         |                           | 41      |  |
|                       | $F120.0 \sim F120.3$ | Machine reference point creation signal        | ZRF1 $\sim$               | 7.1     |  |
|                       | 1120.0 1120.5        |                                                | ZRF4                      |         |  |
|                       | G100                 | Selection signal of feed axis and direction    | +J1~+J4                   | 311     |  |
| JOG feed/             | G102                 | Selection signal of feed axis and direction    | -J1~-J4                   | 5.1.1   |  |
| incremental feed      | F214.0               | X selection                                    | XVAL                      | 12.8    |  |
|                       | F214.1               | Z selection                                    | ZVAL                      | 12.0    |  |
| JOG feed/             | G10,G11              | Manual traverse override signal                | JV0~JV15                  | 3.1.2   |  |
| incremental feed      | G19.7                | Manual rapid feed selection signal             | RT                        | 3.1.3   |  |
| CNC ready signal      | F1.7                 | CNC ready signal                               | MA                        | 2.2     |  |
|                       | F0.6                 | Servo ready signal                             | SA                        | 1.2     |  |
|                       | F2.1                 | Rapid feed signal                              | RPDO                      |         |  |
| State output signal   | F2.6                 | Cutting feed signal                            | CUT                       | 26      |  |
| State Output signal   | F1.5                 | Tapping signal                                 | ТАР                       | 2.0     |  |
|                       | F2.3                 | Thread cutting                                 | THRD                      |         |  |
| Single block          | G46.1                | Single block signal                            | SBK                       | 55      |  |
| Single block          | F4.3                 | Single block test signal                       | MSBK                      | 5.5     |  |
| Start locked          | G7.1                 | Start locked signal                            | STLK                      | 2.4     |  |

|                            | G46.7        | Dry run signal                                       | DRN       | 5 /     |  |
|----------------------------|--------------|------------------------------------------------------|-----------|---------|--|
| Diyiun                     | F2.7         | Dry run test signal                                  | MDRN      | 5.4     |  |
| Function                   | Address      | Signal name                                          | Code      | Chapter |  |
| Rapid feedrate<br>override | G14.0, G14.1 | Rapid feedrate override signal                       | ROV1,ROV2 | 6.2.2   |  |
| Emergent stop              | X0.5<br>G8.4 | – Emergent stop signal                               | ESP       | 2.1     |  |
|                            | F10~F13      | Auxiliary function code signal                       | M00~M31   |         |  |
|                            | F7.0         | Auxiliary function strobe signal                     | MF        | 7.1.1   |  |
|                            | F9.4         |                                                      | DM30      |         |  |
|                            | F9.5         | -                                                    | DM02      |         |  |
|                            | F9.6         | - M decode signal                                    | DM01      | 7.1.2   |  |
|                            | F9.7         |                                                      | DM00      |         |  |
| Auxiliary function         | F22~F25      | Spindle speed code signal                            | S00~S31   |         |  |
|                            | F7.2         | Spindle speed strobe signal                          | SF        | 7.2     |  |
|                            | F26~F29      | Tool function code signal                            | T00~T31   |         |  |
|                            | F7.3         | Tool function strobe signal                          | TF        | 7.3     |  |
|                            | G4.3         | End signal of auxiliary function                     | FIN       | 7.4.1   |  |
|                            | F1.3         | End signal of distribution                           | DEN       | 7.4.2   |  |
|                            | G44.7        | Manual sequential tool change signal                 | HDT       | 9.2     |  |
|                            | F205.0       | Level selection for toolpost locked signal           | TCPS      |         |  |
| Tool change<br>function    | F205.1       | Level selection for toolpost in-position signal      | TSGN      | 12.2    |  |
|                            | F207         | Total tool selection                                 | TMAX      | 12.3    |  |
|                            | F223.0       | Tool change mode selection                           | PB5       |         |  |
|                            | F223.2       | If in-position of tool change end is tested          | PB6       |         |  |
| Auxiliary function         | G5.6         | Auxiliary function locked signal                     | AFL       |         |  |
| locked                     | F4.4         | Auxiliary function locked test signal                | MAFL      | 7.5     |  |
| M 1' 1 1 1                 | G44.1        | All axes on machine locked signal                    | MIK       | 5.2     |  |
| Machine locked             | F4.1         | All axes on machine locked test signal               | MMLK      | 5.3     |  |
|                            | F75.1        | Auxiliary function locked                            | AFLO      |         |  |
|                            | F75.2        | Program jump                                         | BDTO      |         |  |
| Soft operator panel        | F75.3        | Single block                                         | SBKO      | 11 1    |  |
|                            | F75.4        | Machine locked                                       | MLKO      | 11.1    |  |
|                            | F75.5        | Dry run                                              | DRNO      |         |  |
|                            | F197.1       | OUT key                                              | OUTO      |         |  |
| Memory defence             | G46.3        | Memory defence signal                                | KEY1      | 11.2    |  |
| Mode selection             | F3.0         | Increment mode detection signal                      | MINC      | 2.5     |  |
|                            | F3.1         | Handwheel mode detection signal                      | MH        |         |  |
|                            | F3.2         | JOG mode detection signal                            | MJ        |         |  |
|                            | F3.3         | MDI mode detection signal                            | MMDI      |         |  |
|                            | F3.5         | Auto mode detection signal                           | MMEM      |         |  |
|                            | F3.6         | Edit mode detection signal                           | MEDT      |         |  |
|                            | F4.5         | Machine reference point return detection mode signal | MREF      |         |  |

# 爲г≃州数控

## GSK980TD Turning Machine CNC

|                                                            | F4.6                         | Program reference point return detection mode signal         | MPRO                        |        |
|------------------------------------------------------------|------------------------------|--------------------------------------------------------------|-----------------------------|--------|
|                                                            | G43.0~G43.2,<br>G43.5, G43.7 | Mode selection signa                                         | MD1,MD2,<br>MD4<br>DNC1,ZRN |        |
|                                                            | G74.4                        | Signal of spindle clockwise rotation in rigid tapping        | SRVB                        |        |
| Rigid tapping                                              | G74.5                        | Signal of spindle counterclockwise rotation in rigid tapping | SFRB                        | 8.5    |
|                                                            | F76.3                        | Signal in rigid tapping                                      | RTAP                        |        |
| Deset                                                      | G8.7                         | External reset signal                                        | ERS                         | 5 2    |
| Reset                                                      | F1.1                         | Reset signal                                                 | RST                         | 5.2    |
| Selection signal with<br>reset key for output<br>interface | F204.3                       | Selection signal with reset key for output interface         | RSJG                        | 12.7   |
| Tailstock control                                          | F208.2                       | Tailstock control is invalid/valid                           | SLTW                        | 12.8.3 |
|                                                            | F208.0                       | Chuck function is valid                                      | SLSP                        |        |
| Internal/external                                          | F208.1                       | Do not check chuck signal                                    | SLQP                        | 12.4   |
| chuck function                                             | F209.0                       | Internal chuck selection                                     | PB1                         | 12.4   |
|                                                            | F209.2                       | Chuck in-position signal test is valid                       | PB2                         |        |
| Pressure low                                               | F209.4                       | Pressure low detection is valid                              | PB3                         | 12.5   |
| detection                                                  | F209.5                       | Level selection for pressure signal                          | SPB3                        | 12.5   |
| Safeguard detection                                        | F209.6                       | Safeguard detection is valid                                 | PB4                         | 12.6   |
|                                                            | F209.7                       | Level selection for safeguard input signal                   | SPB4                        |        |
| S1-S4 output<br>selection                                  | F211.0                       | S1-S4 output selection                                       | SUOS                        | 12.1.6 |

## (Address sequence)

| Function     | Address                               | Signal name | Code |
|--------------|---------------------------------------|-------------|------|
| G4.3         | Signal for auxiliary function end     | FIN         |      |
| G5.6         | Signal for auxiliary function locked  | AFL         |      |
| G6.4         | Override canceling signal             | OVC         |      |
| G7.2         | Cycel start signal                    | ST          |      |
| G8.0         | Interlock signal                      | IT          |      |
| G8.4         | Emergent stop signal                  | ESP         |      |
| G8.5         | Feed pause signal                     | SP          |      |
| G8.7         | External reset signal                 | ERS         |      |
| G10,G11      | Manual traverse override signal       | JV0~JV15    |      |
| G12          | Feedrate override signal              | FV0~FV7     |      |
| G14.0, G14.1 | Rapid feedrate override signal        | ROV1, ROV2  |      |
| G18.0, G18.1 | Handwheel feed axis selection signal  | HS1A, HS1B  |      |
| G19.4, G19.5 | Handwheel/Incremental override signal | MP1, MP2    |      |
| G19.7        | Manual rapid feed selection signal    | RT          |      |
| G29.4        | Spindle speed in-position signal      | SAR         |      |
| G29.6        | Spindle stop signal                   | *SSTP       |      |

| Function     | Address                                                  | Signal name | Code |
|--------------|----------------------------------------------------------|-------------|------|
| G30          | Spindle override signal                                  | SOV0~SOV7   |      |
| G43.0~G43.2, |                                                          | MD1, MD2,   |      |
| G43.5, G43.7 | Mode selection signal                                    | MD4, DNC1,  |      |
|              |                                                          | ZRN         |      |
| G44.0        | Optional block jump signal                               | BDT1        |      |
| G44.1        | All axes on machine locked signal                        | MIK         |      |
| G44.7        | Manually sequential tool change signal                   | HDT         |      |
| G46.1        | Block signal                                             | SBK         |      |
| G46.3        | Memory defence signal                                    | KEY1        |      |
| G46.7        | Dry run signal                                           | DRN         |      |
| G54, G55     | User maro program input signal                           | UI0~UI15    |      |
| G74.4        | Spindle clockwise rotation in rigid tapping              | SRVB        |      |
| G74.5        | Spindle counterclockwise rotation in rigid tapping       | SFRB        |      |
| G100         |                                                          | +J1~+J4     |      |
| G102         | Feed axis and direction selection signal                 | -J1~-J4     |      |
| G114         |                                                          | +L1~+L4     |      |
| G116         | Overtravel signal                                        | -L1~-L4     |      |
| G200.0       | Spindle jog function signal                              | SPHD        |      |
| G201~G204    | Current tool selection signal                            |             |      |
| F0.4         | Feed dwell lamp signal                                   | SPL         |      |
| F0.5         | Cycle start lamp signal                                  | STL         |      |
| F0.6         | Servo ready signal                                       | SA          |      |
| F0.7         | Automatic run signal                                     | OP          |      |
| F1.0         | Alarm signal                                             | AL          |      |
| F1.1         | Reset signal                                             | RST         |      |
| F1.3         | Distribution end signal                                  | DEN         |      |
| F1.5         | Tapping signal                                           | ТАР         |      |
| F1.7         | CNC ready signal CNC                                     | MA          |      |
| F2.1         | Rapid feed signal                                        | RPDO        |      |
| F2.3         | Thread cutting                                           | THRD        |      |
| F2.6         | Cutting feed signal                                      | CUT         |      |
| F2.7         | Dry run test signal                                      | MDRN        |      |
| F3.0         | Increment mode detection signal                          | MINC        |      |
| F3.1         | Handwheel mode detection signal                          | МН          |      |
| F3.2         | JOG mode detection signal                                | MJ          |      |
| F3.3         | MDI mode detection signal                                | MMDI        |      |
| F3.5         | Auto mode detection signal                               | MMEM        |      |
| F3.6         | Edit mode detection signal                               | MEDT        |      |
| F4.0         | Optional block jump detection signal                     | MBDT1       |      |
| F4.1         | All axes on machine locked detection signal              | MMLK        |      |
| F4.3         | Single block detection signal                            | MSBK        |      |
| F4.4         | Detection signal for auxiliary function locked           | MAFL        |      |
| F4.5         | Detection signal for machine reference point return mode | MREF        |      |
| F4.6         | Detection signal for program reference point return mode | MPST        |      |
| F7.0         | Auxiliary function strobe signal                         | MF          |      |

Appendix

# ᇫ┌┈州数控

| Function       | Address                                                     | Signal name | Code     |
|----------------|-------------------------------------------------------------|-------------|----------|
| F7.2           | Spindle speed function strobe siganl                        | SF          |          |
| F7.3           | Tool function strobe signal                                 | TF          |          |
| F9.4           |                                                             | DM30        |          |
| F9.5           |                                                             | DM02        |          |
| F9.6           | M encode signal                                             | DM01        |          |
| F9.7           |                                                             | DM00        |          |
| F10~F13        | Auxiliary function code signal                              | M00~M31     |          |
| F22~F25        | Spindle speed code signal                                   | S00~S31     |          |
| F26~F29        | Tool function code signal                                   | T00~T31     |          |
| F53.4          | Background busy signal                                      | BGEACT      |          |
| F54、F55        |                                                             | UO0~UO15    |          |
| F56~F59        | User macro program output signal                            | U0100~UO131 |          |
| F75.1          | Auxiliary function locked soft key                          | AFLO        |          |
| F75.2          | Program optional jump soft key                              | BDTO        |          |
| F75.3          | Block soft key                                              | SBKO        |          |
| F75.4          | Machine locked soft key                                     | MLKO        |          |
| F75.5          | Dry run soft key                                            | DRNO        |          |
| F76.3          | Rigid tapping process signal                                | RTAP        |          |
| F94.0~ F94.3   | End signal of machine reference point return                | ZP1~ZP4     |          |
| F102.0~ F102.3 | Axis traversing signal                                      | MV1~MV4     |          |
| F106.0~ F106.3 | Axis motion direction signal                                | MVD1~MVD4   |          |
| F120.0~ F120.3 | Reference point creation signal                             | ZRF1~ZRF4   |          |
| F197.1         | OUT key in MDI mode MDI                                     |             |          |
| F198.0~ F198.3 | End signal of program reference point return                | PRO1~PRO4   |          |
| F199.0         | Spindle jog detection signal                                | MSPHD       |          |
| F200.4         | Analog spindle is valid                                     | SIMSPL      | NO.001.4 |
| F201.2         | If OUT key starts programs (only in MDI mode)               | DCS         | NO.004.2 |
| F201.5         | Level selection for deceleration signal when executing      | DECI        | NO.004.5 |
|                | reference point return                                      |             |          |
| F204.3         | Selection Signal with Reset key for output interface        | RSJG        | NO.009.3 |
| F205.0         | Level selection for toolpost locked signal                  | TCPS        | NO.011.0 |
| F205.1         | Level selection for toolpost in-position signal             | TSGN        | NO.011.1 |
| F205.2         | Self-hold of axis motion is valid in reference point return | ZNIK        | NO.011.2 |
| F207           | Total tool selection                                        | TMAX        | NO.084   |
| F208.0         | Chuck function is valid                                     | SLQP        | NO.164.0 |
| F208.1         | Do not check chuck clamping signal                          | SLSP        | NO.164.1 |
| F208.2         | Tailstock control function is invalid/valid                 | SLTW        | NO.164.2 |
| F208.3         | Spindle rotating enables the input signal is valid          | SPEN        | NO.164.3 |
| F208.5         | Level selection for gear shifting in-positon signal         | AGIM        | NO.164.5 |
| F208.6         | Check gear shifting in-position signal when gear shifting   | AGIN        | NO.164.6 |
|                | to 1, 2                                                     |             |          |
| F208.7         | Automatic gear shifting is valid                            | AGER        | NO.164.7 |
| F209.0         | Chuck mode selection                                        | PB1         | NO.168.0 |
| F209.2         | Detection function for chuck in-position signal is valid    | PB2         | NO.168.2 |
| F209.4         | Pressure low detection is valid                             | PB3         | NO.168.4 |

| Function | Address                                                                | Signal name | Code     |
|----------|------------------------------------------------------------------------|-------------|----------|
| F209.5   | Level selection for pressure signal                                    | SPB3        | NO.168.5 |
| F209.6   | Safteguard detection function is valid                                 | PB4         | NO.168.6 |
| F209.7   | Level selection for safeguard input signal                             | SPB4        | NO.168.7 |
| F210.0   | Input $*0V1 \sim *0V8$ for external feedrate override switch is valid  | SOVI        | NO.172.0 |
| F210.3   | Shield the external emergent stop signal(*ESP)                         | ESP         | NO.172.3 |
| F210.5   | Shield the external pause signal(*SP)                                  | MSP         | NO.172.5 |
| F210.6   | Shield the external cycle start signal(ST)                             | MST         | NO.172.6 |
| F211.0   | S1-S4 output selection                                                 | SUOS        | NO.173.0 |
| F211.1   | 0.1mm feedrate selection signal on                                     | SINC        | NO.173.1 |
|          | Handwheel/Incremental mode                                             |             |          |
| F212.2   | The system is executing G04(dwell)                                     | CDWL        |          |
| F212.3   | The system is executing check                                          | CINP        |          |
| F212.4   | Override of 0%                                                         | COVL        |          |
| F213.0   | Outputtingm message by RS232 interface                                 | CTPU        |          |
| F213.1   | Inputting message by RS232 interface                                   | CTRD        |          |
| F214.0   | Select X direction                                                     | XVAL        | NO.175.0 |
| F214.1   | Select Z direction                                                     | ZVAL        | NO.175.1 |
| F214.7   | Spindle jog/lubrication                                                |             | NO.175.7 |
| F223.0   | Select a tool change mode                                              | PB5         | NO.182.0 |
| F223.2   | Whether the in-position signal is detected at the end of tool changing | PB6         | NO.182.2 |

## **APPENDIX 4: GSK980TD STANDARD FUNCTION CONFIGURATION**

#### A.DT address definition

| Address | Definition                                                           | Parameter |
|---------|----------------------------------------------------------------------|-----------|
| DT0000  | Gear shifting time 1                                                 | NO.065    |
| DT0001  | Gear shifting time 2                                                 | NO.066    |
| DT0002  | Alarm time width for low pressure                                    | NO.069    |
| DT0003  | Time upper limit for moving one tool when executing tool change      | NO.076    |
| DT0004  | Time upper limit for tool change from the first tool to the last one | NO.078    |
| DT0005  | Executive duration for M code                                        | NO.080    |
| DT0006  | Executive duration for S code                                        | NO.081    |
| DT0007  | Delay from stop of toolpost clockwise rotation to start of           | NO.082    |
|         | counterclockwise locked                                              |           |
| DT0008  | Alarm time without receiving*TCP                                     | NO.083    |
| DT0009  | Locked time for toolpost counterclockwise rotation                   | NO.085    |
| DT0010  | Output time from spindle stop to braking                             | NO.087    |
| DT0011  | Spindle braking output time                                          | NO.089    |
| DT0012  | Spindle rotational time when spindle jogging                         | NO.108    |
| DT0013  | Lubrication output pulse time                                        | NO.112    |
| DT0016  | Automatic lubrication meantime                                       |           |
| DT0017  | Automatic lubrication output time                                    |           |
| DT0018  | Chuck pulse output width                                             |           |

Gj ℠州数控

DT0021

Spindle stop, chuck operation enabling delay

#### B. X, Y address definition



endix

C. GSK980TD standard function ladder

## 「<sup>™</sup>州数控设备有限公司 GSK CNC EQUIPMENT CO., LTD.

Add: No.52, 1<sup>st</sup> . Street, Luochong North Road, Luochongwei, Guangzhou, 510165, China

Website: http://www.gsk.com.cn Tel: 86-20-81796410/81797922 E-mail: sale1@gsk.com.cn Fax: 86-20-81993683

All specification and designs are subject to change without notice July. 2006/Edition 2

Suit for software version:V06.03.23

July. 2006/Printing 2